
Bowtie
Langmead, Trapnell, Pop, Salzberg 2009


 
CS 4390/5390 

Fall 2019



FM-Index

The "BWT Index" discussed previously is also called the "FM Index"

•Originally defined by Ferragina and Manzini in 2000/2005


Reminder that the BWT/FM-index is:

•A data structure for a sting T containing

•BWTT$ encoded as a wavelet tree

•an integer array C continuing the counts of each character from Σ in T



Refresher on BWTs
Can be constructed using the 
last character of the 
lexicographic order of all 
cyclic rotations of the text



Refresher on BWTs
Can be constructed using the 
last character of the 
lexicographic order of all 
cyclic rotations of the text

Encodes the original text, 
which can be recovered by a 
walk in the sequence



Refresher on BWTs
Can be constructed using the 
last character of the 
lexicographic order of all 
cyclic rotations of the text

Encodes the original text, 
which can be recovered by a 
walk in the sequence

Searching for patterns is done 
back to front using similar 
techniques to sequence 
recovery



Using a BWT to Align Reads

The BWT and FM-Index are insufficient for aligning reads since it doesn't 
allow for errors


Previously mentioned some method to overcome this


Bowtie assumes all changes are single point changes (i.e. mismatches only)

•They use a backtracking search to find matching locations

•The quality scores are used to prioritize alignments

•Other speed-ups are included to ensure all matching locations are found



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."



Backtracking Options
The user specifies the sum of the quality scores that can be changed

•this means that a mapping can have lots of low quality replacements, or

•one medium quality change 


Bowtie outputs the first valid alignment by default (within the specified constraints)

•can be modified to complete the backtracking and return the "best" alignment

•2x-3x slower to do this


User can specify a number of alignments to consider

•default is to use only one

•might want the two best alignments

•2 alignments is ~2x slower than using only 1



Excessive Backtracking

In low quality reads, lots of time may be spent backtracking since there are 
many possible changes at low quality positions. 


They mitigate this by creating two indexes (as we saw previously), one for 
the forward and one for the reverse of the string

•the backtracking is performed somewhat simultaneously on both index 
as we will see next


One other step they take is to concentrate on the "high-quality" end of a 
read (the first 28 characters read) which is most reliable



Phased Search
Split the seed (first 28 bases) into two parts, hi-half and lo-
half


Assume we're allowing 2 changes in the seed, a good 
alignment will have either: 


1. no mismatches

2. no mismatches in hi-half, 1 or 2 mismatches in lo-half

3. 1 or 2 mismatches in hi-half, no mismatches in lo-half

4. 1 mismatch in hi-half, 1 mismatch in lo-half

Phase 1 uses the mirror index and invokes the aligner to find alignments for cases 1 & 2. 

Phases 2 and 3 cooperate to find alignments for case 3: 


Phase 2 finds partial alignments with mismatches only in the hi-half, and 

phase 3 attempts to extend those partial alignments into full alignments. 


Finally, phase 3 invokes the aligner to find alignments for case 4. 



Phased search with reverse strand

Since both the read and its reverse 
complement are possibilities for ma match, 
need to consider both. 


Phases 2-4 here map to phases 1-3 
previously. 



Performance

Maq (Li, Ruan, Durban 2008), SOAP (Li, Li, Kristiansen, Wang 2008) the 
leading competitors at the time


Both used hashing to find potential mapping locations



Performance
Platform CPU time Wall clock 

time
Reads mapped 
per hour (millions)

Peak virtual memory 
footprint (megabytes)

Bowtie 
speed-up

Reads 
aligned (%)

Bowtie -v 2
Server

15 m 7 s 15 m 41 s 33.8 1,149
351×

67.4

SOAP 91 h 57 m 35 s 91 h 47 m 46 s 0.10 13,619 67.3

Bowtie
PC

16 m 41 s 17 m 57 s 29.5 1,353
59.8×

71.9

MAQ 17 h 46 m 35 s 17 h 53 m 7 s 0.49 804 74.7

Bowtie
Server

17 m 58 s 18 m 26 s 28.8 1,353
107×

71.9

MAQ 32 h 56 m 53 s 32 h 58 m 39 s 0.27 804 74.7



Take Aways

Bowtie was (at the time) the fastest short read aligniner


Used a one-time index based on a BWT that could be reused (novel at the 
time) 


Is able to run on a standard PC


When first published didn't use mate-pair information



Bowtie2



Bowtie2



Bowtie2


