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under a defined scoring function. 



The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a 
query string Q find the sting(s) S in D which is/are closest matches to Q 
under a defined scoring function. 

Scoring functions are typically either  

•Semi-global alignment -- The best possible alignment score between a 
substring A of S and Q, or  

•Local alignment -- The vest possible alignment score between a 
substring A of S and a substring B of Q.



Evaluating Database Search

Sensitivity -- Ratio of true positives (substrings in the database matching 
the query string) found by the algorithm to the true number of positives. 


Efficiency -- Running time of the method. 



Types of Algorithms

Exhaustive Search -- Enumerate all possible solutions to find the best one. 
very sensitive, very slow 

Heuristic Search -- Reduce the search space by estimating alignments but 
sometimes overlooks solutions. less sensitive, fast 

Filter Based -- Select candidate positions in the database where the query 
is likely to match. medium sensitivity, moderately fast



Smith-Waterman's Revenge

For each sequence S in D, run Smith-Waterman between S and Q


Return the sequence(s) with the largest alignment score. 


Running time is O(mn) per sequence, this is very slow, but very accurate.



FastP and FastA

The first attempts at speeding up search. 


Both are based on the idea that (in protein sequences) replacements are 
more common than indels.


Developed in 1983 and 1988 respectively, FastP does not allow for gaps at 
all while FastA will find gapped alignments, but only in certain 
circumstances. 



FastP
Step 1: Identify "hotspots" -- find k-mers that are shared between the query 
and the database using a lookup table (this table is 4k for DNA and RNA, 20k 
for Proteins)

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database
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FastP
Step 2: locating diagonal runs -- pairs (or larger groups) of hot spots such 
that the distance between the hot-spots is the same in both the query and 
the database sequence

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

The score of a diagonal run is 
the sum of the base-scores of 
the hotspots and penalties for 

inter-spot characters 



FastP

Step 3: re-score the best diagonal runs -- rather than fixed inter-spot scores 
based on length, rescore the alignments using actual character matches
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FastA (adding gaps)

Step 4: join diagonal runs -- using a fixed score based on the locations of 
the regions, join them with a fixed gap-style cost

Q
S from D

Diagonal Run
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Q
S from D



Basic Local Alignment Search Tool (BLAST)

Most commonly used database search tool in computational biology. 


Originally published in 1990 by Altschul, Gish, Myers, Miller and Lipman.


Faster than FastA.



Basic Local Alignment Search Tool (BLAST)

Step 1: Query-preprocessing:

1. split the query into k-mers

2. create a set of neighbors of each k-mer, other k-mers such that the 

replacement scores are not too high (this can be done with a Σk lookup 
table) 

ACCTAGAT
ACC
CCT
CTA
TAG
AGA
GAT
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Basic Local Alignment Search Tool (BLAST)

Step 2: Database scanning -- label any instance of a neighbor of Q in any 
sequence S of D as a "hit", collect all of these hits 
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Basic Local Alignment Search Tool (BLAST2)

Step 3: Hit extension -- for any sequence S in D, with two hits (for protein, 
one for DNA) extend in either direction without gaps until the score drops 
too low 

Q
S from D

hit
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Basic Local Alignment Search Tool (BLAST2)

Step 4: Gapped extension -- run modified Smith-Waterman in each direction 
from the mid-point of the hits until the alignment score goes too low. 

Q
S from D

hit
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Database Search Statistics
Both BLAST and FastA return a hit quality score called an E-value and a bit score. 

•E-value is the expected number of alignments having an alignment score >S 
at random. 

E = Kmne−λS

•K and λ are parameters based on the scoring scheme
•as the lengths double, the number of sequences with that score does
•as the score doubles, the number of sequences is exp. smaller

•Bit score is the normalized scoring value

S′ =
λS − ln K

ln 2
•Note that now E=mne-S' so when S' is big, the alignment is significant

•You can calculate p-values from the E-value is 1-e-E.



MegaBLAST

Greedy adaptation that only works for DNA


Takes in multiple query sequences rather than one

•concatenates the sequences together

•runs the query on this longer sequences 

•results are resorted after


Uses linear (affine) gap costs by default



BLAST-Like Alignment Tool (BLAT)

Only works for DNA (not Protein or RNA)


Instead of creating a lookup table for the query, create one for the database

•this takes a lot of memory to store

•only store non-overlapping k-mers


Still uses a 2-hit requirement


Stitches together local alignments on the same database sequence to create 
larger alignments (think intron splicing)



PatternHunter
Only works on DNA


Uses a patented concept called Spaced Seeds 

A spaced seed is a binary sequence BS has two parameters:

•weight, w, and 

• length, m.

•It contains w 1's, and (m-w) 0's


Two sequences sequences of length m are a match if the characters at the 
positions of BS that are 1's match


Spaced seeds reduce the number of false matches



PatternHunter

11111111111
AGCATTCAGTC
|||||||||||
AGCATTCAGTC

111010010100110111
ACTCCGATATGCGGTAAC
|||-|--|-|--||-|||
ACTTCACTGTGAGGCAAC

111010010100110111
ACTCCAATATGCGGTAAC
|||-|--|-|--X|-|||
ACTCCAATATGCAGTAAC

11111111111 
 11111111111

111010010100110111 
 111010010100110111



PatternHunter

Lemma The expected number of hits of a weight-w length-m seed model 
within a length L region with similarity p (p ∈ [0,1]) is (L-m+1)pw. 

Proof For each possible position within the region, the probability of having w 
specific matches is pw. Since there are L-m+1 possible positgions within the 
region, the expected number of hits is (L-m+1)pw. 


Example, a region of 64 characters, with 70% similarity. BLAST is expected to 
have 1.07 hits, and PatternHunter would have 0.93. (w=11, m=11 for BLAST, 
m=18 for PatternHunter)



Position-Specific Iterated BLAST (PSI-BLAST)

Designed to find distant protein sequences. 

Input:  
Protein  
Sequence

BLAST
Set of high 
similarity 
sequences

Create  
Multiple 

Alignment

Position 
Specific 
Scoring 
Matrix



Position-Specific Iterated BLAST (PSI-BLAST)
Position 1 2 3 ... n

A 0 0 0 ... 0
R 0 0 0 ... 0
N 100 0 0 ... 0
D 0 0 0 ... 0
C 0 0 0 ... 0
W 0 0 0 ... 0
E 0 50 0 ... 0
G 0 50 0 ... 0
H 0 0 0 ... 0
I 0 0 0 ... 0
L 0 0 100 ... 0
K 0 0 0 ... 0
M 0 0 0 ... 100
F 0 0 0 ... 0
P 0 0 0 ... 0
S 0 0 0 ... 0
T 0 0 0 ... 0
W 0 0 0 ... 0
Y 0 0 0 ... 0
V 0 0 0 ... 0

NGL ... M
NEL ... M
-GL ... M
NE- ... M



Q-gram Alignment base on Suffix ARrays 
(QUASAR)

Given

•a database, D

•a query, S

•a maximum difference, k, and 

•the window size, w


Find:

•a set of (X,Y) where X and Y are length-w substrings in D and S 
respectively,

•such that the edit distance between X and Y is at most k. 



Q-gram Alignment base on Suffix ARrays 
(QUASAR)

Based on splitting the windows into q-grams (k-mers)

Lemma Given two length w sequences X and Y, if their edit distance is at most k, 
then they must share at least w+1-(k+1)q common q-grams.
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X
X

X'
Y'

If w+1-(k-1)q q-grams 
match, can edit distance be 

higher than k?
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contain it

•for all Y with counter greater than w+1-(k+1)q, run a 
sequence alignment algorithm
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Q-gram Alignment base on Suffix ARrays 
(QUASAR)

The actual QUASAR algorithm uses this principle to find potential 
alignments:

•for each w length substring of S, X and 

•maintain counters for each w length substring of D, Y 

•for each q-gram in S, increment the counters for the Y that 
contain it

•for all Y with counter greater than w+1-(k+1)q, run a 
sequence alignment algorithm

Where do suffix arrays come in? 

•When searching for the q-grams in D 
•along with an additional array idx(Q) which points to the 
begining of the locations that start with Q in the suffix array.

i SA[i]

1 5 ACT idx(AC)
2 2 AGCT idx(AG)
3 4 CACT idx(CA)
4 1 CAGCACT

5 6 CT idx(CT)
6 3 GCACT idx(GC)
7 7 T



Q-gram Alignment base on Suffix ARrays 
(QUASAR)

Speedups 

Window Shifting

•Similar to the solution to homework 2, each window shared quite a few q-grams with 
the one before it, use that to reduce running time. 


Block Addressing

•Rather than counting the occurrences in all Y, break D into non-overlapping blocks of 
b (> 2w) and keep counters there

•Keep a second offset set of blocks to not miss any spanning windows. 

•If any block contains enough matching q-grams, run a more detailed pass

D
Windows

Blocks
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Q-gram Alignment base on Suffix ARrays 
(QUASAR)

Running time
•Suffix array construction O(|D| log |D|)
•S has O(|S|) q-grams, which we expect |D|/4q hits each, therefore the 
initial hit list is generated in O(|S||D|/4q) expected time. 
• If c blocks meet the hit requirements, the alignment takes O(c b2) time

•Total search time is O ( |S | |D |
4q

+ cb2)
Space
•Suffix array takes O(|D| log |D|) space, then O(|D|/b + b2) space for the 
query. 



Locality Sensitive Hashing
The idea of locality sensitive hashes, is that you can use an efficient to compute hash 
to estimate something that is computationally difficult. 


Let s be the similarity you would like to estimate, and h be a hash function on the same 
types of elements. (d would take two arguments and return a distance, h takes one 
argument and returns something). 


We say h is an LSH for d if

•s(x,y) = pr(h(x)=h(y))


We say h is a gapped LSH for d if the following holds:

• if s(x,y) ≤ s1 then pr(h(x)=h(y)) ≤ p1, and 

• if s(x,y) ≥ s2 then pr(h(x)=h(y)) ≥ p2.

•more precisely it's (s1,s2,p1,p2)-sensitive.



Quick digression to Hamming Distance

We know edit distance is the minimum number of insertions, deletions, and 
mismatches to convert one string into another. 


Hamming distance is the minimum number of only mismatches. 


Also used in vectors, the number of dimensions that have different values. 



Locality Sensitive Hashing

Let hk,π(s) be a function that takes string s and return a selected set of k 
characters based on some random ordering of integers π.


If the hamming distance of s1 and s2, both of length w, is d, then 




In other words, the more similar the sequences are (the lower d is and thus) 
the higher probability of a hash collision.  

Pr (hk,π(s1) = hk,π(s2)) = ∏
j=1,...,k

Pr (s1 [π [j]] = s2 [π [j]]) = (1 −
d
w )

k



LSH-ALL-PAIRS

Using the Locality Sensitive Hash described for hamming distance, locate 
highly-probable match locations. 


The LSH can introduce false discoveries:

•False positive: s1 and s2 are dissimilar, but hk,π(s1) = hk,π(s2) 

-can be eliminated by checking the actual hamming distance

•False negative: s1 and s2 are similar, but hk,π(s1) ≠ hk,π(s2) 

-can be reduced by repeating search using multiple π



LSH-ALL-PAIRS

Algorithm (given Q, D, w, d, m)

•generate m random orderings π1, π2,..., πm.

•for every w-mer s in D, compute hk,π1(s), hk,πm(s), ..., hk,πm(s).

•for every pair of w-mers s and t from D and Q such that hk,πj(s)= hk,πj(t) for 
some j 
• if the hamming distance between s and t is less than d, report (s,t)



LSH-ALL-PAIRS

Unlike the previous algorithms, LSH-ALL-PAIRS provides a guarantee that all 
sequences with hamming distance less than d will be found with probability
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Are the methods presented good enough?

8,000 queries 

•2,000 from each of 4 species: 
chimpanzee, mouse, chicken, zebrafish

• length ranged from 170-19,000 bases 
(average of 2,700)


Aligned to the human genome using BLAST


Baseline is an exact search algorithm called 
BWT-SW (not discussed in class, but in the 
posted book chapter if interested)

[T. W. Lam, et al. Compressed indexing and local alignment of DNA, Bioinformatics, 24(6), March 2008, Pgs. 791–797]



Are the methods presented good enough?

8,000 queries 

•2,000 from each of 4 species: 
chimpanzee, mouse, chicken, zebrafish

• length ranged from 170-19,000 bases 
(average of 2,700)


Aligned to the human genome using BLAST


Baseline is an exact search algorithm called 
BWT-SW (not discussed in class, but in the 
posted book chapter if interested)

[T. W. Lam, et al. Compressed indexing and local alignment of DNA, Bioinformatics, 24(6), March 2008, Pgs. 791–797]

Usually considered a "significant match"



Protein Replacement Matricies

To now we have been talking about a "score" between two sequences 
without gaps with the penalties in the abstract. 


Most people will use one of the PAM (percent accepted mutations), 
BLOSUM (blocks substitution matrix), or VTML series of replacement (or 
transition) matrices. 


All 3 are based on statistics from databases of proteins labeled in order to 
match based on function.



Protein Replacement Matrices
BLOSUM (most popular) published 
by Henikoff & Henikoff in 1992.


Usually accompanied by a number 
(i.e. BLOSUM62, on the right) 
which is the percent identity of the 
pairs of sequences used for 
training. 


The actual value is a log-odds 
value of the replacements from a 
large set of examples. 



Protein Replacement Matrices

PAM and VTML also have numbers associated, but the allowable amount of 
time between sequences1, so its inversely correlated with the BLOSUM 
number. 

Somewhat equivalent matrices (by entropy)

BLOSUM90 PAM100 VTML100

BLOSUM80 PAM120 VTML120

BLOSUM60 PAM160 VTML160

BLOSUM52 PAM200 VTML200

BLOSUM45 PAM250 VTML250

1Time is measured relative to the evolutionary time it takes to introduce one change 
per 100 amino acids. 
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and k-mer size 2 perform BLAST 
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Exercise
Given the sequence VPNM, a threshold of 8, 
and k-mer size 2 perform BLAST 
preprocessing to find the set of k-mers to 
search for. 
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Exercise
Given the sequence VPNM, a threshold of 8, 
and k-mer size 2 perform BLAST 
preprocessing to find the set of k-mers to 
search for. 

V P N M
V P

P N
N M

VP IP LP MP

PN PD PH PS

NM NL



Lets BLAST some stuff!

https://blast.ncbi.nlm.nih.gov/Blast.cgi


