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Exact String Matching

* Given string P, called the pattern, and a longer string T, called the text, the
exact matching problem is to find all occurrences, if any, of P in T.

e Example:
e P="aba", [ = "bbabaxababay"

e Poccursin [ at positions: 3, 7, &9
 Note, that 2 occurrences overlap



Exact String Matching

Naive algorithm
elinearly compare the pattern to each starting position in the text O(hm)

Z-box preprocessing
*in linear time identifies the longest string at each position that matches a prefix
of that string

(same string) l

S

Zi i i J I+Zi-1 rj

Boyer-Moore
 Match from right to left in the pattern, and move by more than one character



Suffix Trees

xabxac

Ukkonen's algorithm builds a suffix tree in
O(m)-time using 3 rules:

*Rule 1 In the current tree SJi...j| ends at a leaf, append character
S[j+1] to the label.
*Rule 2 SJi...j] ends at an internal node or in the middle of a label, and

no extension starts with Sfj+17/, add new leaf.
* Rule 3 Some path from SJi...j| starts with Sfj+7], do nothing.




Generalized Suffix Trees

123456 a $
S1 = xabxa & b _x 1,1
S1 = babxba b
a $
> 1,4
b 24 7
K
$
1,2
2,2 Using Ukkonen's Algorithm

» build the tree for Sy

- match Sz in the tree until a mismatch is
found at Safj]

- restart the Ukkonen algorithm from j (all
suffixes of S[7...j-1] are already in the tree)

* repeat for Ss, S4, ..., Sk




Suffix Arrays

A suffix array contains the starting
position of the suffixes of a string
when listed in lexicographic order.

One more concept:
Icp(i,j) for positions /i and j is the
length of the longest common

prefix of the suffixes at position
I and j in the suffix array
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Global Alignment Problem

* An alignment of two sequences is formed by inserting gap characters,'-/,

INn arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball---
-——-ballcap
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Global Alignment Problem

* An alignment of two sequences is formed by inserting gap characters,'-/,

INn arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball baseball--- baseball
-ballcap —-——-ballcap ballca-p

How do we know which one of these is best?



Needleman-Wunsch

* Define an nxm array V, the cell V(i,j) will hold the score of the best sub
alignments of S/7.../l and T/[1...J]
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Needleman-Wunsch

* Define an nxm array V, the cell V(i,j) will hold the score of the best sub
alignments of S/7.../l and T/[1...J]

 The recurrence relation (the base of any DP)
Vi—1,7—1)4+ 05[], T]i]) match/mismatch
V(i,j) = max { V(i — 1))+ o(S]i], —) delete
Va,j— 1)+ o(—,T]j]) insert

e The Initialization Is:
V(0,0) =0
V(0,)) = V(0,j-1) + o(-, T[]])

V(i,0) = V/(i-1,0) + 5(S[il,-) Optimal alignment score is in V(n,m)



Local Alignment

e Given two strings S and T, find the two substrings, A of S and B of T, with
the highest alignment score.

e Brute-force: Align all substrings of S with all substrings of 1. There are

2 2
would be O(n3m3)!

n m
( ) substrings of S, and ( ) substrings of 7. The total running time

e Smith and Waterman [1981] developed an algorithm, similar to
Needleman-Wunch, that is able to find the optimal local alignment in
O(mn)-time.



Smith-Waterman

e The recurrence relation

0 align empty strings
o Vii—17—1)4+06(5]i], T]i]) match/mismatch
V(i,7) = max | , |
Vi—1,)+ o(S[i], —) delete
Via,j— 1)+ o(—,T]j]) insert

e The Initialization iIs;
V(,)) = V(1,0) =0



Semi-global Alignment

Ignored spaces Modification

The beginning of S Initialize column O to Os
Theend of S Search for the maximum value in the last column
The beginning of T Initialize row O to Os

Theendof T Search for the maximum value in the last row




Affine Gap Costs

The one everyone uses!

Attributed to Gotoh [1982]

Define the function fap(k) =: @ + b * k where a and b are tunable parameters
(if a=0, this is the same as before)

Can still be solved in O(mn)-time and O(mn)-space, but we need a bit
more sophistication



Affine Gap Costs

Jap,s(A) = amiy — fmsy —yidy —6-9p

emt, -- number of columns where both characters match
ems, -- number of columns where there characters are different (mismatches)
eid,y -- number of gap characters (indels)

*gpa -- Nnumber of gaps

13



Gotoh's Algorithm

Recursion Initialization
o G(0.j) = E0.j) = — 1* (y + &)
F(i. i) = max FG—-1,)) -y G(i.0) = F(i.0) = — 1 * (1 + &)
F@,j) = — 0

E(i, j) = max {G(i,j— Dy e s

GGi—1,j—1)+a ifS[i]=TIi]
GGi—1,—1)—p if S[i] = T[i]
E(1, j)
F(i, )

G(i,j) = max



An example

s1 = AACCCG
s1 = AAGGCC

A 3 AA--CCCG
AAGGCC--

2 AAGGCC-

A AACCCG
3  AAGGCC

A, AAc-CCe
4 anGGce-

Question: what values of a,B,y, and 6 should
we choose to get the “best” alignment?

15
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A 1 AA--CCCG
AAGGCC--

A AA-CCCG
2  AAGGCC-

A AACCCG
3  AAGGCC

n, BAC-cce
4 aagece-

Question: what values of a,B,y, and & should Whatdo we eVﬁ?
we choose to get the “best” alignment? mean by "best™

15



Parametric Alignment

 when two parameters are free, there are only
O(n?) different regions

* the boundaries are always lines

* the boundaries can be found in O(n4)-time
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A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

AACCCG AAC-CCG AA-CCCG

AAGGCC AAGGCC- AAGGCC -

Ground Truth Computed Alignments
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A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

50% 33%
AACCCG AAC-CCG AA-CCCG

AAGGCC AAGGCC- AAGGCC -

Ground Truth Computed Alignments

17



The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a
query string Q find the sting(s) S in D which is/are closest matches to Q

under a defined scoring function.



The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a
query string Q find the sting(s) S in D which is/are closest matches to Q
under a defined scoring function.

Scoring functions are typically either

Semi-global alignment -- The best possible alignment score between a
substring A of S and Q, or

e Local alighment -- The vest possible alignment score between a
substring A of S and a substring B of Q.



FastA/FastP

Step 1: Identify "hotspots” -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3. re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

Query CAACTTGCC

Database ACGGTTACGTAGGTCCG
GCGTAGGCAGAAGTTGCCTGCGT
ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC
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Basic Local Alignment Search Tool (BLAST)

Step 1: Query-preprocessing:
1. split the query into k-mers
2. create a set of neighbors of each k-mer, other
k-mers such that the replacement scores are
not too high (this can be done with a 2% lookup
table)

Step 2: Database scanning -- label any instance of a
neighbor of Q in any sequence S of D as a "hit",
collect all of these hits

Step 3: Hit extension -- for any sequence S in D, with
two hits (for protein, one for DNA) extend in either
direction without gaps until the score drops too low

Step 4: Gapped extension -- run modified Smith-
Waterman in each direction from the mid-point of the
hits until the alignment score goes too low.

Database

Query
ACCTAGAT

ACC

» {ACC,TCC,AGC,ACG}

CCT
CTA
TAG
AGA
GAT




Other Database Search Tools

MegaBLAST
e only for DNA but searches multiple sequences at once

BLAT (BLAST-Like Alignment Tool)
*only for DNA, indexes the database not the query

PatternHunter
e Uses spaced-seeds rather than substings to search the database

PSI-BLAST (Position-Specific Iterated BLAST)
e updates the replacement matrix using an MSA until unchanged

QUASAR (Q-gram Alignment base on Suffix ARrays)
e uses the pigeon hole principle to find sequences in the database that are potential matches

LSH-ALL-PAIRS
* uses k-mer orderings to find probable matching sequences using a minimizer scheme



Multiple Sequence Alignment Problem

Given
A set of sequences s1,Sy,...,S« (of length n)
* An objective function

Find:
ean ¢ by k matrix (£=n)
e where row / contains the characters from sequence s; in order with inserted gap characters
e that is optimal under the objective function.

Input

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP




Multiple Sequence Alignment Problem

Given
A set of sequences s1,Sy,...,S« (of length n)
* An objective function

Find:
ean ¢ by k matrix (£=n)
e where row / contains the characters from sequence s; in order with inserted gap characters
e that is optimal under the objective function.

Input Output
AGTPNGNP A-GT-PNGNP
AGPGNP — >| A-G--P-GNP
AGTTPNGNP A-GTTPNGNP
CGTPNP ~CGT-PN--P
ACGTUNGNP ACGT-UNGNP




Multiple Sequence Alignment

Whats the objective function:
* most popular -- Sum-of-Pairs Objective:

e given some scoring function for a pairwise alignment PairScore(s1',s2')
the score of the multiple alignment is:

SPScore({s), 5y, ...,8.}) := Z PairScore(s;, s;)

1<i<j<k



Finding an optimal MSA

Can we find an optimal multiple sequence alignment?
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Can we find an optimal multiple sequence alignment?

*yes! we can use the same dynamic programming methods we had for pairwise
alignment

*assume there are only 3 sequences, then the recursion is the following:

VIi—1,j = Lk—=1] +0o(slil, s,[7]) + o(s,171, s31k]) + o(sli], s51k])
VIi—1,j— L] +0(s1 2], s,17D) + o(s,[71," =) + o(s; [i]," =)
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VIi,j, k] =max < V]i,j— 1,k —1] +o(" =", 8, [J]) + o(s,1]], s51k]) + o(" =", sz[k])
VIii— 1,7, k] +20(s[1],"=")
VIi,j — 1k] +20(s5,[71,"=")
VI[i,j, k—1] +20(s3[k]," =")



Finding an optimal MSA

Can we find an optimal multiple sequence alignment?

*yes! we can use the same dynamic programming methods we had for pairwise
alignment

*assume there are only 3 sequences, then the recursion is the following:
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What happens with 4 sequences? How many clauses are in the max? How big is V7



Finding an optimal MSA

Can we find an optimal multiple sequence alignment?

*yes! we can use the same dynamic programming methods we had for pairwise
alignment

*assume there are only 3 sequences, then the recursion is the following:
VIi=1,j—Lk—=11 +0(sli]. s;[7]) + 6(s5lj1, sslk]) + (s lil, s31&])
VIi—1,j — 1,k] +o(s 1], s;[j]) + o(s,1J], =" ) + 5(S1[z] ")
Vii-1,5,k—1] +o(sq[1]," =) + o(s, [ 1, s31k]) +
VIi,j, k] = max { V[i,j — 1,k — 1] +0(" =", s,[J]) + (s, /], 850k

VIi — 1./, k] +25(s,[i]," ")
VIi,j = 1.k] +20(s,[71,"=")
VIi,j, k — 1] +25(s5[k]," =")

What happens with 4 sequences? How many clauses are in the max? How big is



The Center Star Method

S. = arg min Z D(S,,

- 1<j<k

The final step is to build an alignment so that all of
the alignments between S¢c and S; are satisfied.




Progressive Alignment

Similar to center star in that we use pairwise

alignments to help build multiple alignments.

Introduced by Feng and Doolittle in 1987.

Basic idea:

e compute pairwise alignment scores for
each pair of sequences

*generate a guide tree which ensures
similar sequences are near to each other

 align sequences (or groups) one-by-one
from the leaves of the tree

~a-c-—-G
A-CT-TG - A T-TG
AGCTA G—[lAG——A G—— AG——A-C

ACTAG—[ACT—G
A-C—-A-G

[from Balcan, et al. 2019, arXiv:1908.02894]



Progressive Alignment

Similar to center star in that we use pairwise
alignments to help build multiple alignments.

Introduced by Feng and Doolittle in 1987.

Basic idea:

e compute pairwise alignment scores for
each pair of sequences

* generate a guide tree which ensures
similar sequences are near to each other

 align sequences (or groups) one-by-one
from the leaves of the tree

"Progressive alignment from consensus sequences"

~a-c-—-G
A-CT-TG - A T-TG
AGCTA G—[lAG——A G—— AG——A-C

ACTAG—[ACT—G
A-C—-A-G

[from Balcan, et al. 2019, arXiv:1908.02894]
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ClustalW

Algorithm

. Calculate the <2> pairwise alignments.
« Compute the pairwise distance between sequences as 1-§ where x IS the

number of gap characters, and y is the number of matches.

e Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).

* From the leaves compute the alignment at each internal node

e cach alignment will be between either: (i) two sequences, (ii) two partial
alignment, or (i) a sequence and a partial alignment.
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MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:;
1. draft progressive alignment -- similar to ClustalW but with

* LE score for aligning profiles,
e a more efficient tree building algorithm, and

* a more efficient pairwise comparison (using k-mer counting).
2. improved progressive alignment -- using the alignment from (1)

. redefine the pairwise distances using the Kimura distance —ln(l —D—%z)

* D is the fraction of matches.
» re-align.
3. refinement -- deleting an edge in the guide tree creates two sub-groups of sequences with

induced sub-alignments.
» Extract those two sub-alignments and realign them.

* Only keep the new alignment if the SP score is increased.
 Stop when SP has not improved: in a predefined number of iterations or when all edges are

visited.



Some terminology




Tree Building Algorithms

Two major classes:
e Distance-based methods

e for each pair of items, get some evolutionary distance (edit distance,
melting temp for DNA hybridization, strength of antibody cross
reactions)

find a tree that "agrees” with the distances either ultametric or additive

e most cases In real life don't match this so you have to find a good
approx.

e Maximum-Parsimony methods
e character-based data only (not necessarily DNA/RNA/Protein data)

e iInfer sequences at the internal nodes and maximize parsimony
(minimize the mutations) along branches



Ultrametric Trees

Let D be a symmetric nxn matrix of real
numbers. An ultrametric tree for D is a rooted
tree T such that:

* [ contains n leaves labeled by a unique row
of D.

*Each internal node of T is leveled by one
entry from D and has at least 2 children.

* Along any path from the root to a leaf, the

numbers labeling the internal nodes are
strictly decreasing.

*For any two leaves jj of T, D(i,)) is the leavel
of the least common ancestor of /andjin T.

Therefore, T (if it exists) is a compact
representation of D




Additive-distance trees

Ultrametric is the "holy grail”, but when its not able to be
obtained, we can use a less stringent model.

Definition
*Let D be a symmetric n by n matrix where the

numbers on the diagonal are all 0, and the oft-
diagonal numbers are all strictly positive.

et T be an edge-weighted tree with at least n nodes,
where n distinct nodes are labeled with rows of D.

*Tree T is called an additive tree if for every pair of A
labeled nodes (i, j), the path from node / to node j has 2
total weight (or distance) exactly D(i,)). 3
Problem 1
«Given a matrix D with Os on the diagonals, and B

positive numbers in all other locations, find the
additive tree T or determine that one does not exist.
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answer is more likely to be correct" (when you hear hooves think horses not zebra).
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Parsimony

Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler
answer is more likely to be correct" (when you hear hooves think horses not zebra).

In sequence evolution each character in a sequence will be modified at most one time (sometimes
called the infinite sites model).

Therefore, we can change the sequence data into a binary labeling
(0 if the character is unchanged in this sequence
1 if it has already been modified

Definition Given an n by m binary character matrix M, a phylogenetic tree for M is a rooted tree T with
exactly n leaves that obeys the following:
«each of the n objects labels exactly 1 leaf of T

e each of the m characters labels exactly 1 edge of T
« for any object p, the characters that label the edges along the unique path from the root to the
leaf specify all of the characters of p whose state is 7.



Maximum Parsimony

The Maximum Parsimony Problem (sometimes called the Large Parsimony Problem) is stated as
follows:

e Given a matrix M for a set S of n taxa

*find the tree T wihch is leaf labeled by S and minimizes the edges that are labeled by character
position changes.

This problem is NP-Hard

Branch and Bound

estart with a 3-leaf tree, add each leaf at each edge by breaking it and adding a new internal node
e computation tree grows exponentially

2-approximation
find the minimum spanning tree in the leaf graph, convert into a phylogeny by adding edges
*O(n’m) time



Neighbor Joining

Algorithm Given a distance matrix M with rows labeled (7,2,3....n)
elet Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)
ofor all {i},{j} € Z set D{i},{j})=Mi
*while [Z|>1
edefine ua = 1/(n-2) * 2rez D(A,F) for all A € Z
JA,B) =arg min D(A,B) —u, — up
(A,B)EZ
*form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights %(D(A,B)+(MA—MB)) and % (DA, B) + (s — uy)) ESPECTively.
o/ =/ u{C}-{AB}
edefine D(F,C) = D(C,F) =1/2 ( D(A,F) + D(B,F) - D(A,B) )
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Algorithm Given a distance matrix M with rows labeled (7,2,3....n)
o]0] « let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)
o0 for all {i},{j} € Z set D({i}, {j})=Mi,
*while [Z|>1

edefine ua = 1/(n-2) * 2rez D(A,F) for all A € Z

JA,B) =arg min D(A,B) —u, — up

(A,B)EZ
*form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights - (b4, 8 + w, - uy) aNd - (D4, B + @, - u) respectively.
o/ =/ u{C}-{AB}
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Neighbor Joining

Algorithm Given a distance matrix M with rows labeled (7,2,3....n)
6100] e let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)
o0 for all {i},{j} € Z set D({i}, {j})=Mi,
*while [Z|>1
edefine ua = 1/(n-2) * 2rez D(A,F) for all A € Z

JA,B) =arg min D(A,B) —u, — up
(A,B)EZ

*form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights - (b4, 8 + w, - uy) aNd - (D4, B + @, - u) respectively.

o/ =/ u{C}-{AB}

edefine D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )

O(n3) total time
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ethe count of the number of ¢'s occurring before position/in B, and the jthc In B
*note that ranko(B,i) = i - rank+(B, i)
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Rank and Select

Given a binary sequence B, define
rank (B,i) = [{i'| 1 <i'<i,Bli'l =}

select (B, j) = arg min {mnkc(B, 1) =] },

where ce{0, 1}

ethe count of the number of ¢'s occurring before position/in B, and the jthc In B
*note that ranko(B,i) = i - rank+(B, i)

Algorithms
*O(n log n) space, O(71) time -- store all of the rank values in an array
*O(n) space, O(n) time -- compute rank manually for each value

*O(n) space, O(1) time -- store a subset of precomputed rank values
(details omitted)
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ecan create o binary strings and use independently, on(1+0(1)) space
* more efficient model uses n log o(71+0(1)) bits, and O(log o) time

ldea Is to partition the alphabet and create a tree of bit vectors

r

T A GTCGAT TACCGTGCGAGCTC CTGNA-A
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Generalize rank and select to alphabet 2
ecan create o binary strings and use independently, on(1+0(1)) space
* more efficient model uses n log o(71+0(1)) bits, and O(log o) time

ldea Is to partition the alphabet and create a tree of bit vectors
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Burrows-Wheeler Iransform

Remember our old friend the suffix array?

SAT BWTr
12 |8 i i
I =mississippi$ 11 | is o D
8 |1ippi$ s s
5 1ssippl$ S ?
2 ississippi$m m
1 |mississippi$ |$
10 | pis P |[p
9 ppi$ i i
7 | sippi$ s [s
4 sissippiS$mis ?
6 |ssippi$ i |1
3 ssissippiSmi Z
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Remember our old friend the suffix array?

SAT BWTr
12 | $ i Z
I =mississippi$ 11 | is p 5
8 |1ippi$ s g
5 1ssippi$ S ?
2 1ssissippl$m E BWT, = {T[SAT[i] - 1] If SA;{i] > 1
1 |mississippi$ |$ $ if SA-[i] =1
10 | pi$ p D
9 ppi$ i i
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BWT Index

A BWT Index for a sequence T is a data structure with:
the BW'T1gencoded as a wavelet tree; and

*the integer array C/0...g], where C/c| stores the number of occurances of
the characters less than c in T$

With the BWT Index, you can:
e construct the Suffix Array
erecover T in O(log n) per character
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Input
sp, ep) = (1,n
e pattern, P = p1,p02,p3,...,0m ('O_ 'O) ( ) _
-count array, C whilesp<epand/> 1 do
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Counting Occurrences

I =1

Inpl-JJ|E)a’c’cern, P =p1,02,ps3,...,0m (S,O, e,o) - (7,[‘))
.count array, C whilesp <epand/> 7 do
«BWTrs, L C = pj
Output sp = C[c] + rankc(L,sp-1)+1
enumber of occurrences of Pin T ep = C[C] + rankC(L,ep)
f=1-1
If ep < sp then
return O

else



Counting Occurrences

I =1

Input —
*pattern, P = p1,02,p3,...,0m (S'O " P ) - (7,[‘)) _
-count array, C whilesp<epand/> 1 do
«BWTrs, L C =pj
Output sp = C[c] + rankc(L,sp-1)+1
*number of occurrences of Pin T ep = C/c] + rankc(L,ep)
[ =1-1
If ep < sp then
return O
else

returnep -sp + 1
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Bidirectional BW'1

Given a string T a bidirectional BWT index is a data structure with the following
operations:

e;sLeftMaximial(i,j) -- 1 if BWT+g/i...J] contains more than one value, 0 otherwise
e;sRightMaximial(i,j) -- 1 if BWTtg/i...J] contains more than one value, O otherwise
eenumerateleft(i,j) -- return the distinct values BWTg/l...J| in lexicographic order
enumerateRight(i,j) -- return the distinct values BWTg/l...J| in lexicographic order
eextendLeft(c, (W, T),I(W,T)) -- returns the pair (I(cW,T),I(Wc,T))

eextendRight(c, (W, T),I(W,T)) -- returns the pair ((Wc,T),l(cW,T))




Suffix Tree Traversal

Given bidirectional BWT jdx of string T
(interval [1...n+1] represents the root)

Output pairs (¥, |¢(v)|) for all noes v in
the suffix tree of T where ¥ Iis the
interval of v in the suffix array of T$
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Suffix Tree Traversal

S = empty stack
S.push(([1...n+1], [1...n+1], 0))

Given bidirectional BWT idx of string T while S is not empty do

(interval [1...n+1] represents the root) ([Li:11°,)7],d) = S.pop()
output (/i,j],d)

Output pairs (v, |¢(v)|) for all noes v in 2' = idx.enumerateLeft(l,))

the suffix tree of T where ¥ is the | =@

interval of v in the suffix array of T$ forc € >'do

[ =1 U {idx.exgendLeft(c,[i,jl.[i",]'])}
for ([i.j.1i",j]) € | do
if idx.isRightMaximal(i',/') then
S.push(([i /(1,7 1,d+1))



Computational Problem

Given
e a reference genome G, and
ea set of reads R = (r1,ra,13,...,1k) € (21)kwhere each read r is a subsequence
of G with a small number changes
Output
ethe semi-global alignment of ri and G for all ri € R with <k changes
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Given
e a reference genome G, and
ea set of reads R = (r1,ra,13,...,1k) € (21)kwhere each read r is a subsequence
of G with a small number changes
Output
ethe semi-global alignment of ri and G for all ri € R with <k changes

call these k-error mappings
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Only need to go to a depth of 2m since the best alignment
can't be worse than deleting one string and inserting the other.




Aligning reads

AGGCCTAAAGGGCCTT

AGGCCTAAAGGGCCTT

Only need to go to a depth of 2m since the best alignment
can't be worse than deleting one string and inserting the other.

We don't have the suffix tree!




Dynamic Programming using a BWT

define Branch(d,][i...j]):
for C € IdX enumerateF?ight(i,j) dO compute the dynamic programming table row

process (C d) - using character c in row d

If d = 2m and score > threshold do
output alignment

Ifd <2mdo
Branch(d+1,idx.extendRight(c, [i,j])
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Dynamic Programming using a BWT

define Branch(d,][i...j]):
for C € IdX enumerateF?ight(i,j) dO compute the dynamic programming table row

process (C d) - using character c in row d

If d = 2m and score > threshold do
output alignment
Ifd <2mdo
Branch(d+1,idx.extendRight(c, [i,j])) O(mo)-time

O(m2+mo)-space




Backtracking

Start by matching the exact sequence

If the algorithm reaches a point with no
matches swap out characters already
matched and restart search from that there

When ties occur, start with the character
with the lowest quality score, keep the rest
INn a stack

Keep track of how many changes are made

Exact

Inexact

...........

396, 396

60, 60

145, 145

390, 390

51, 51

140, 140

278,278

75,75

160, 160

396, 396

102, 103

349, 349

270, 273

396, 399

...........

............

184, 184

278, 290

1,30

184, 184

278, 290

104, 124

184, 184

278, 290

80, 88

167,174

240, 266

390, 396

Pommme g

............

------------

184, 278

278, 401

1,104

104, 184

278, 401




Backtracking

Start by matching the exact sequence

If the algorithm reaches a point with no

matches swap out characters already

matched and restart search from that there

When ties occur, start with the character

with the lowest quality score, keep the rest

In a stack

Keep track of how many changes are made -

...........

............

396, 396

60, 60

145, 145

390, 390

51, 51

140, 140

278,278
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102, 103

349, 349

270, 273

396, 399

...........

............

184, 184

278, 290

1,30

184, 184

278, 290

104, 124

184, 184

278, 290

80, 88

167,174

240, 266

\t

390, 396

------------

............

184, 278

278, 401

1,104

104, 184

278, 401

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."



Read Read (‘everse comolement)
CCASTAGCTCTCAGCCTTATTTTACCCAGGCCTGETA EACAGGETGGGTAAAATAAGGCTGAGAGCTACTGS

o
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=

=

-

Aoy
=

o

n

Seed alignments (as BW ranges) % N Extension candidates
B ( (211, 212], [212, 214] } g riocsining
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Seed Searching

Maximal Mappable Prefix (MMP) for read R, read start location /, and genome G:
*the longest substring Rfi ... (1 + MML - 1)]
*such that there exists some set J = {j1,jo,...,jn} Where for all jxeJ
Rfi ... (+MML-1)] = GJj... ([k+MML-1)]
where MML is the Maximal Mapping Length

The basic algorithm Is
*map from the start of the read as far as possible
erestart searching from the next position to the right

RNA-seq read

Genome
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Take Aways for STAR

Non-contiguous alignment for RNA-Seq is not a totally solved problem
STAR is specifically designed to take introns into account during alignment

Algorithm Is extendable to longer read lengths since it can ignore poor
quality regions and chimeric reads

Large memory consumption, but fast due to the use of uncompressed SAs



Using strict alignment critera,
genome

opHat uses Bowtie to align reads to the whole
Construct the set of mapped sequences

II|||||""'"||
i
l

finl

*the "islands" of sequence that map to the genome
 using the assemble functionality of MAQ

jil

Map reads to whole

genome with Bowtie

Splice junctions usually happen with predictable bases

Collect 1nitially
e consider all possible pairs as potential splice locations

*create a set of new sequences

unmappable reads
Y
— o Assemble
consensus of
covered regions
Generate possible
. . _ — - splices between
* store the k-mer surrounding such locations as a seed for mapping gt ag ag neighboring
exons Y
For each unmapped read Build seed table
e extract all unigue k-mers from the "high quality” region
*here k~10
left exon -gt ag_ right exon

index from

unmappable reads
'..‘“ :',-'
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gt ag ag
high quality

Map reads to possible
splices via seed-and-

extend



Using strict alignment critera,
genome

opHat uses Bowtie to align reads to the whole
Construct the set of mapped sequences
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finl

*the "islands" of sequence that map to the genome
 using the assemble functionality of MAQ

jil

Map reads to whole

genome with Bowtie

Collect 1nitially
unmappable reads
\
— o Assemble
consensus of
: : : : : covered regions
Splice junctions usually happen with predictable bases ' :
e consider all possible pairs as potential splice locations l
* create a set of new sequences I Generate possible
. . _ — - splices between
* store the k-mer surrounding such locations as a seed for mapping gt ag ag neighboring
exons Y
For each unmapped read Build seed table
e extract all unigue k-mers from the "high quality” region index from
*here k~10

unmappable reads

Map reads to possible
gt ag ag splices via seed-and-

extend



Take Aways from TopHat

Uses existing software to do some of the heavy lifting
Strict parameters on the splice junctions make the algorithm fast

Limited in the splice junction sequence



De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:
o/ = 2k -- there Is a vertex for each possible k-mer
oF ={ax = xb | a,b € 2, x € 21} -- for each (k+7)-mer axb,
there is an edge from the k-mer ax to the k-mer xb

k=1

R
&/ i ) C' @o@@o@ (om)@l@




Sequence de Brujin Graphs

What is most commonly used in practice for genome assembly Is a subset
of the DBG based on a given sequence

This is sometimes In literature referred to as simply a de Brujin Graph

Unknown target genome

ATGCTATGCGT
8 ATGCTA (k+1)-mers
D . CTATGC =) |ATGC TGCT GCTA CTAT
» ATGCGT TATG ATGC TGCG GCGT

Y
4/ ATGC — ATG,TGC
[ (k+1)-mer k-mers
de Bruijn Graph
Eulerian path

TATG

ATGC—TGCT GCTA CTAT ?
A | | GCT - C T
N |

Image courtesy 10.1093/nar/gks678



Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

[ Overlap j [ Error cotrection ]

[ La:/out j [ de Bruij¢n graph ]

[ Con:ensus ] [ Reitme j
I___l l—l

[Scaffolding ]

|

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

CNANLN

’,\\//\/\/\\ Genomic DNA
e n O V O Fragment and paired-end sequencing

of Ilbrarles with variant insert sizes.

A

e
—— 150~500 bp

i Represent read sequence
B _:-_:b_—:_ @ overlap using de Bruijn
]

2~10 Kb

graph

Remove erroneous connections on the
graph

(i) Remove low- (iii) Resolve
coverage links tiny repeats

e2
D e5 Break at repeat boundaries
and output contigs
e3 A

(i) Clip tips (iv) Merge bubbles

Gap closure
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Jaccard Similarity

Measures the similarity of two sets of items A and B

dsS.

ANB AnB‘
J(A, B) = —

AUB _\A\+ B|—‘AnB‘ J(A,B)Z

Used also used in computer vision, sometimes
called the "Intersection over Union" (loU) metric

|:I How would we use

Jaccard for sequences?

Poor Good Excellent




Jaccard Similarity

In sequence analysis we construct a sets of k-mers for each of the strings
being compared

A N
¥ 63




Min-Hash Sketch

Calculating the union and intersection of a set of anything (in particular $k$-mers)
can be time consuming (O(n) time)

Can we calculate it faster?
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Min-Hash Sketch

Calculating the union and intersection of a set of anything (in particular $k$-mers)
can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:
egiven a hash function on k-mers h: 2k—Z+
*and the sets of k-mers for two string Aand B,
«What is the probability that min ., {h(c)} = min.cg {h(c)}?

Turns out that
Pr, [mincE A {h(c)} = MIN,p {h(c)}] = J(A, B)
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Min-Hash Sketch
Why is Pr, [mincE 4 h(c)} = min g {h(c)}] = J(A, B)?

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,
it will be minimum for both A and B.

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection?



Min Hash Sketch with 1 Hash

TGACG AAGCT
GTACT GGCAT

The idea Is that you choose the minimum n

elements according to the hash h, and compute
jaccard on these subsets

This subset of k-mers iIs called a "sketch"

v ¥ >

S(A) S(AUB) S(B)
Sometimes called "MinHash bottom sketching” 2 6 67
128 82 104
139 87 127

|A N B - IS(AuU B)nS(A) nS(B)|

JAB) =T 0B ™ ISGA U B)|

Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.



Minimizer Schemes

For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o0 as a
representative

Minimizer schemes have two special properties:
* two sequences with a long exact match must
select the same k-mers
* there are no large gap between selected k-
mers

Use in k-mer counting, de Brujin graph
construction, data structure sparsification, etc.

—— Mminimizer

;
S

Vs

\ minimizer \

location

window

62



Problems with Jaccard

;A N
>




Problem Formulation

Given:
earead A,
*a maximum per-base error rate, €max, and
*a reference genome, B.

Goal:

Aarala I Y £ AYAa AYa a
- B - v LAT A UJ e I

A.“‘ A Y a A a ‘
- - y Y X

e identify target positions B; where:

J(A,Bl‘) > ?(é'm k) — 0

ax?

E (J (A,B,-)) > G(e,,-k) butonlyin expectation, so 6 = (90% confidence interval) is subtracted to account for variance in the estimate



Algorithm 1. Stage 1 of map-
ping read

Input: read A, reference index
map H (hash k-mer
— posl]), s, T

Output: list 7' of candidate

regions in the reference

m = [s-T]

T=L=]|]

for e € Wy (A) do

L L.append(H(e))

sort(L)
for i — 0 to |L| —m do
j—i+(m—1)
if (L[j] — L[i]) < |A| then
L T .append(
(Llj] — |A] + 1, L) )

© 0 O Ot b W NN+

Stage 1

Find all ranges in B that could be a match to A
«they have = st = m number of matching k-mers

This is actually performed somewhat in reverse
*first find all matching minimizers
*sort them by location
*in each range of m matches
e ask If they are they condensed enough
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map H (hash k-mer
— posl]), s, T

Output: list 7' of candidate

regions in the reference

m = [s-T]

T=L=]|]

for e € Wy (A) do

L L.append(H(e))

sort(L)
for i — 0 to |L| —m do
j—i+(m—1)
if (L[j] — L[i]) < |A| then
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Stage 1

Find all ranges in B that could be a match to A
«they have = st = m number of matching k-mers

This is actually performed somewhat in reverse
*first find all matching minimizers
*sort them by location
*in each range of m matches
e ask If they are they condensed enough

‘ —I—I—I—I—I—I— B



Stage 1

Algorithm 1. Stage 1 of map-

ping read
nput; read A {ﬁfeﬁce index Find all ranges in B that could be a match to A
map ash k-mer _
— pos[]), s, T «they have = st = m number of matching k-mers

Output: list 7' of candidate
regions in the reference
m = [s-T]

 T—L— I This is actually performed somewhat in reverse
. f‘[" Zipvggrff();}‘;) *first find all matching minimizers
; ;(c::tz_(i)o o L] do *sort them by location
7 | jeit(m—1) *in each range of m matches
X ifL(I}[ﬂp;(fﬂ() < 4 then « ask if they are they condensed enough
L (LU) - A+ 1L )
5 Ha) - HY sl m = 3 k-mers

‘ —I—I—I—I—I—I— B



Algorithm 2: Stage 2 of mapping a read

© 0 N 6 0 bk W N -

T
NN OO O W NN = O

18

Input: index M, stage 1 output 7', s, 7
Output: P
Lo =1}
Lo.insert(Wp(A));
for (x,y) € T do
14— T;
Jj < x+[Af;
L+ £O;
L.insert(getMinimizers(i,j));
J = solveJaccard(L);
if 7 > 7 then
| P.append((i, J));
while 7 <y do
L.delete(getMinimizers(i,i+1));
L.insert(getMinimizers(j,j+1
J = solveJaccard(L);
if 7 > 7 then
| P.append({i, J));
1+t
J++;

N—"
N—"

19 Function getMinimizers(p,q):

20 ‘ return {h : (h,pos) € W(B),p < pos < ¢};

21 Function solveJaccard(L):

22

ZO§k§S—1 L[k]

S

return

)

Stage 2

For every B; Iin all potential places identified in stage
e estimate the jaccard using the winnowed sketch

eretain it as a match if its larger than =




CANU

Follows one of the same basic procedure we saw for short read assembly:
e calculate the overlaps between reads
edecide on a layout for the reads
e construct contigs using the consensus sequences

Uses an adaptation of MHARP for overlaps which is an extension of MinHash

e frequent k-mers like those in loops can sometimes interfere with overlap
prediction

*they use tf-idf (term frequency-inverse document frequency) weights to
bias the hashes used



Networks In Biology

Ecological

So far we have only talked about sequences

* Many interactions in biology are not
captured in sequences

* We use graph theory to make biological
conclusions

Molecular
interactions

Neurological



Combined Networks

The meaning of the nodes and edges used Iin a
network representation depends on the type of
data used to build the network and this should
be taken into account when analysing it.

@ &

my

— e—

— c—

Metabolites

Proteins/Genes

Protein-protein interactions
Gene regulation

Cell signalling
Metabolism

Genetic interactions




Topology Analysis

Analyzing the topological features of a
network is a useful way of identifying
relevant participants and substructures
that may be of biological significance.

Some methods
e centrality analysis
*topological clustering
e search for shortest paths

* motifs that are more often applied to
networks with directionality

Centrality
analysis

Base PPl network

ol CRX3

CGRX4

Topological
clustering

.

Others:

 Shortest paths
 Motif search (directed

networks)



Annotation enrichment analysis

- the Gene Ontology
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Annotation enrichment analysis

Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

» Annotation tools perform statistical test tries to that answer: “rGenqOntology

-When sampling X proteins (test set) out of N proteins ‘ ~
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set. 0 ' e\ AT
- The result of this test provides us with a list of terms that describe . = @ — \  ReACT®2t2
the list/network, or rather a part of it, as a whole. - ) g



Annotation enrichment analysis

Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

* Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set.

* The result of this test provides us with a list of terms that describe
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a
reference.

* This Is a widely used technique that helps characterize the
network as a whole or sub-sets of it, such as inter-connected
communities found through topological clustering analysis.
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Annotation enrichment analysis

Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

* Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set.

* The result of this test provides us with a list of terms that describe
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a
reference.

* This Is a widely used technique that helps characterize the
network as a whole or sub-sets of it, such as inter-connected
communities found through topological clustering analysis.

More complex versions of this technigue can factor in continuous
variables such as expression fold change.
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Pathway reconstruction problem

Given
e weighted, directed interactome, G, with physical & regulatory interactions
ereceptors, S, in a sighaling pathway of interest
e transcriptional regulators (TRs), T, in the same pathway
ea parameter k

Find
*the k highest scoring loopless paths that begin at any receptor in S and
endatany TRin T

*the score of the path is the product of the edge weights (all in [0, 7))



Method Setup

Modify the graph
e Add an extra source node s and an extra sink node
eadd edges (s,x) forx e S

eadd edges (y,t) fory e T
e assign the following costs to each edge (u,v)

- {—lag(ww) if u,v € V\{s,t}

o 0 ifu=sorv=rt

| _et the cost of a path be the sum of the edges on the path.



Method Setup

Modify the graph
e Add an extra source node s and an extra sink node
eadd edges (s,x) forx e S

eadd edges (y,t) fory e T
e assign the following costs to each edge (u,v)

- {—lag(ww) if u,v € V\{s,t}

o 0 ifu=sorv=rt

| _et the cost of a path be the sum of the edges on the path.

The least costly s—t path will be the highest weight s—t path



PathLinker

Algorithm
e Find the set of k highest scoring paths P1.Ps,...,Px where each P; = (V;,E))

e Return Gk — ( Ulsigk ‘/ia Ulgigk El)



Basic Algorithm

A.

create human interactome (both

NetBox

Q Human Interaction Network (HIN)

Literature Curated Network

- Protein-Protein Interactions

- Signal Transduction Pathways

interaction and pathway information) © exract Gew-specific Network

find mutated or copy number variant

genes for condition in question

extract these genes and their
neighbors from the interactome

run the Newman-Girvan algorithm to
find modules

analyze statistical significance

Altered Genes

Q |dentify Network Modules

Identify network modules and calculate
network modularity.

Module 1:
Candidate
Drivers

0

Module 2:

Candidate
{) Drivers
Module 3:

Candidate Drivers

9 Assemble Altered Genes in GBM

e

Genes altered by @ I Genes altered by
sequence mutation -' copy number alteration

Altered Genes

Connect all altered genes:
- shortest path threshold
- linker p-value cut off

G Evaluate Statistical Significance of Modularity

Global Null Model: Compare the size of the largest
component in the observed network v. networks arising from
randomly selected gene sets.

9 Local Null Model:

Compare network —— Scaled—

modularity of the Modularity
observed network to . Score
locally rewired networks.
Observed
Modularity
Random
Modularity 1
Distribution 0.4 0



MashMap ldea

First find the winnowed representation of a read
Run the MinHash Sketch on this representation
Reduces the space the hash considers and speeds up computation

They define the winnowed-minhash estimate:

S (W(A) U W(Bi)) NS (W@A)nS (W(Bi)) |

S (A, B;) =
|S(W(A)U W(Bi))|



