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Exact String Matching

• Given string P, called the pattern, and a longer string T, called the text, the 
exact matching problem is to find all occurrences, if any, of P in T. 


• Example: 

• P = "aba", T = "bbabaxababay"

• P occurs in T at positions: 3, 7, & 9

• Note, that 2 occurrences overlap



Exact String Matching
Naïve algorithm

• linearly compare the pattern to each starting position in the text O(nm) 

Z-box preprocessing

• in linear time identifies the longest string at each position that matches a prefix 
of that string




Boyer-Moore

•Match from right to left in the pattern, and move by more than one character
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Z-box



Suffix Trees

Ukkonen's algorithm builds a suffix tree in 
O(m)-time using 3 rules:

•Rule 1 In the current tree S[i...j] ends at a leaf, append character 
S[j+1] to the label.

•Rule 2 S[i...j] ends at an internal node or in the middle of a label, and 
no extension starts with S[j+1], add new leaf.

•Rule 3 Some path from S[i...j] starts with S[j+1], do nothing.

xabxac

x

a

b

c

123456

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2
$

$

$

$

$
$

7 $

$
7



Generalized Suffix Trees
      123456 

S1 = xabxa
S1 = babxba b
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Using Ukkonen's Algorithm 

• build the tree for S1 
• match S2 in the tree until a mismatch is 

found at S2[j]

• restart the Ukkonen algorithm from j (all 

suffixes of S[1...j-1] are already in the tree)

• repeat for S3, S4, ... , Sk



Suffix Arrays

A suffix array contains the starting 
position of the suffixes of a string 
when listed in lexicographic order. 


One more concept:

lcp(i,j) for positions i and j is the 
length of the longest common 
prefix of the suffixes at position 
i and j in the suffix array

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi
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Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-', 
in arbitrary locations along the sequences so that they end up wit the 
same length and there are no two spaces at the same position of the two 
augmented strings. 

baseball---
----ballcap
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Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-', 
in arbitrary locations along the sequences so that they end up wit the 
same length and there are no two spaces at the same position of the two 
augmented strings. 

baseball---
----ballcap

baseball
ballca-p

baseball
-ballcap

How do we know which one of these is best?
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• Define an nxm array V, the cell V(i,j) will hold the score of the best sub 

alignments of S[1...i] and T[1...j]
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• The recurrence relation (the base of any DP) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert
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Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub 

alignments of S[1...i] and T[1...j]

• The recurrence relation (the base of any DP) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

• The initialization is: 
V(0,0) = 0 
V(0,j) = V(0,j-1) + 𝛿(-,T[j]) 
V(i,0) = V(i-1,0) + 𝛿(S[i],-) Optimal alignment score is in V(n,m)



Local Alignment
• Given two strings S and T, find the two substrings, A of S and B of T, with 

the highest alignment score.  

• Brute-force: Align all substrings of S with all substrings of T. There are 

 substrings of S, and  substrings of T. The total running time 

would be O(n3m3)! 

• Smith and Waterman [1981] developed an algorithm, similar to 
Needleman-Wunch, that is able to find the optimal local alignment in 
O(mn)-time. 

(n
2) (m

2 )



Smith-Waterman

• The recurrence relation 




• The initialization is: 
    V(0,j) = V(i,0) = 0 

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Semi-global Alignment
Ignored spaces Modification

The beginning of S Initialize column 0 to 0s

The end of S Search for the maximum value in the last column

The beginning of T Initialize row 0 to 0s

The end of T Search for the maximum value in the last row

T
S



Affine Gap Costs

• The one everyone uses!


• Attributed to Gotoh [1982]


• Define the function fa,b(k) =: a + b * k where a and b are tunable parameters 
(if a=0, this is the same as before)


• Can still be solved in O(mn)-time and O(mn)-space, but we need a bit 
more sophistication 



Affine Gap Costs

•mt𝔸 -- number of columns where both characters match  

•ms𝔸 -- number of columns where there characters are different (mismatches)  

•id𝔸 -- number of gap characters (indels) 

•gp𝔸 -- number of gaps 

13

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸



Gotoh's Algorithm 
Initialization 

G(i, j) = max

G(i − 1,j − 1) + α if S[i] = T[i]
G(i − 1,j − 1) − β if S[i] = T[i]
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − γ
G(i − 1,j) − γ − δ

E(i, j) = max {E(i, j − 1) − γ
G(i, j − 1) − γ − δ

Recursion
G(0,j) = E(0,j) = − 1 * (γ + δj)
G(i,0) = F(i,0) = − 1 * (γ + δj)
E(i,0) = − ∞
F(0,j) = − ∞



An example

15

Question: what values of α,β,ɣ, and δ should 
we choose to get the “best” alignment? 

s1 = AACCCG
s1 = AAGGCC

AA--CCCG 
AAGGCC--𝔸1

AA-CCCG 
AAGGCC-𝔸2

AACCCG 
AAGGCC𝔸3

AAC-CCG 
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2



An example

15

Question: what values of α,β,ɣ, and δ should 
we choose to get the “best” alignment? 

s1 = AACCCG
s1 = AAGGCC

AA--CCCG 
AAGGCC--𝔸1

AA-CCCG 
AAGGCC-𝔸2

AACCCG 
AAGGCC𝔸3

AAC-CCG 
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

What do we even  
mean by "best"?



Parametric Alignment

• when two parameters are free, there are only 
O(n2) different regions


• the boundaries are always lines


• the boundaries can be found in O(n4)-time
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O(n2) different regions


• the boundaries are always lines


• the boundaries can be found in O(n4)-time
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A Digression on Accuracy 

How would we know how accurate an alignment was if we knew the right answer? 

The sum-of-pairs accuracy measures the fraction of substitutions from the ground 
truth alignment that are recovered in a computed alignment

17
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How would we know how accurate an alignment was if we knew the right answer? 
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The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a 
query string Q find the sting(s) S in D which is/are closest matches to Q 
under a defined scoring function. 



The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a 
query string Q find the sting(s) S in D which is/are closest matches to Q 
under a defined scoring function. 

Scoring functions are typically either  

•Semi-global alignment -- The best possible alignment score between a 
substring A of S and Q, or  

•Local alignment -- The vest possible alignment score between a 
substring A of S and a substring B of Q.



FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared 
between the query and the database using a lookup table 
(this table is 4k for DNA and RNA, 20k for Proteins)


Step 2: locating diagonal runs -- pairs (or larger groups) of 
hot spots such that the distance between the hot-spots is 
the same in both the query and the database sequence


Step 3: re-score the best diagonal runs -- rather than fixed 
inter-spot scores based on length, rescore the alignments 
using actual character matches


Step 4 (FastA): join diagonal runs -- using a fixed score 
based on the locations of the regions, join them with a fixed 
gap-style cost


Step 5 (FastA): (banded) Smith-Waterman -- using a fixed 
score based on the locations of the regions, join them with a 
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query
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Basic Local Alignment Search Tool (BLAST)
Step 1: Query-preprocessing:


1. split the query into k-mers

2. create a set of neighbors of each k-mer, other 

k-mers such that the replacement scores are 
not too high (this can be done with a Σk lookup 
table) 


Step 2: Database scanning -- label any instance of a 
neighbor of Q in any sequence S of D as a "hit", 
collect all of these hits  

Step 3: Hit extension -- for any sequence S in D, with 
two hits (for protein, one for DNA) extend in either 
direction without gaps until the score drops too low  

Step 4: Gapped extension -- run modified Smith-
Waterman in each direction from the mid-point of the 
hits until the alignment score goes too low. 

ACCTAGAT
ACC
CCT
CTA
TAG
AGA
GAT

{ACC,TCC,AGC,ACG}

Database Query



Other Database Search Tools
MegaBLAST


•only for DNA but searches multiple sequences at once


BLAT (BLAST-Like Alignment Tool)

•only for DNA, indexes the database not the query


PatternHunter

•uses spaced-seeds rather than substings to search the database


PSI-BLAST (Position-Specific Iterated BLAST)

•updates the replacement matrix using an MSA until unchanged


QUASAR (Q-gram Alignment base on Suffix ARrays)

•uses the pigeon hole principle to find sequences in the database that are potential matches


LSH-ALL-PAIRS

•uses k-mer orderings to find probable matching sequences using a minimizer scheme



Multiple Sequence Alignment Problem
Given

•A set of sequences s1,s2,...,sk (of length n)

•An objective function


Find:

•an ℓ by k matrix (ℓ≥n) 

•where row i contains the characters from sequence si in order with inserted gap characters

• that is optimal under the objective function.

Input

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP



Multiple Sequence Alignment Problem
Given

•A set of sequences s1,s2,...,sk (of length n)

•An objective function


Find:

•an ℓ by k matrix (ℓ≥n) 

•where row i contains the characters from sequence si in order with inserted gap characters

• that is optimal under the objective function.

Output

A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

Input

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP



Multiple Sequence Alignment

Whats the objective function:

•most popular -- Sum-of-Pairs Objective:

•given some scoring function for a pairwise alignment PairScore(s1',s2') 
the score of the multiple alignment is:


SPScore({s′ 1, s′ 2, . . . , s′ k}) := ∑
1≤i<j≤k

PairScore(s′ i, s′ j)



Finding an optimal MSA
Can we find an optimal multiple sequence alignment? 
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Can we find an optimal multiple sequence alignment? 

•yes! we can use the same dynamic programming methods we had for pairwise 
alignment
•assume there are only 3 sequences, then the recursion is the following: 

V[i, j, k] = max

V[i − 1,j − 1,k − 1] +δ(s1[i], s2[ j]) + δ(s2[ j], s3[k]) + δ(s1[i], s3[k])
V[i − 1,j − 1,k] +δ(s1[i], s2[ j]) + δ(s2[ j],′ −′ ) + δ(s1[i],′ −′ )
V[i − 1,j, k − 1] +δ(s1[i],′ −′ ) + δ(s2[ j], s3[k]) + δ(s1[i], s3[k])
V[i, j − 1,k − 1] +δ(′ −′ , s2[ j]) + δ(s2[ j], s3[k]) + δ(′ −′ , s3[k])
V[i − 1,j, k] +2δ(s1[i],′ −′ )
V[i, j − 1,k] +2δ(s2[ j],′ −′ )
V[i, j, k − 1] +2δ(s3[k],′ −′ )
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Finding an optimal MSA
Can we find an optimal multiple sequence alignment? 

•yes! we can use the same dynamic programming methods we had for pairwise 
alignment
•assume there are only 3 sequences, then the recursion is the following: 

V[i, j, k] = max

V[i − 1,j − 1,k − 1] +δ(s1[i], s2[ j]) + δ(s2[ j], s3[k]) + δ(s1[i], s3[k])
V[i − 1,j − 1,k] +δ(s1[i], s2[ j]) + δ(s2[ j],′ −′ ) + δ(s1[i],′ −′ )
V[i − 1,j, k − 1] +δ(s1[i],′ −′ ) + δ(s2[ j], s3[k]) + δ(s1[i], s3[k])
V[i, j − 1,k − 1] +δ(′ −′ , s2[ j]) + δ(s2[ j], s3[k]) + δ(′ −′ , s3[k])
V[i − 1,j, k] +2δ(s1[i],′ −′ )
V[i, j − 1,k] +2δ(s2[ j],′ −′ )
V[i, j, k − 1] +2δ(s3[k],′ −′ )

What happens with 4 sequences? How many clauses are in the max? How big is V?

O(k22knk)-time!!



The Center Star Method

D(S1,S2)

D(S1,S3)

D(S1,Sk-1)

D(S1,Sk)

S1

S2

S3

Sk-1

Sk

Sc = arg min
1≤i≤k ∑

1≤ j≤k

D(Si, Sj)

The final step is to build an alignment so that all of 
the alignments between Sc and Si are satisfied.



Progressive Alignment
Similar to center star in that we use pairwise 
alignments to help build multiple alignments. 


Introduced by Feng and Doolittle in 1987. 


Basic idea: 

•compute pairwise alignment scores for 
each pair of sequences 

•generate a guide tree which ensures 
similar sequences are near to each other
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each pair of sequences 

•generate a guide tree which ensures 
similar sequences are near to each other

•align sequences (or groups) one-by-one 
from the leaves of the tree

[from Balcan, et al. 2019, arXiv:1908.02894]"Progressive alignment from consensus sequences"
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Algorithm
•Calculate the  pairwise alignments.(n

2)
•Compute the pairwise distance between sequences as  where x is the 
number of gap characters, and y is the number of matches. 

1 −
x
y

•Use the neighbor-joining method to create the guide tree (we will talk 
about the details of this later). 
•From the leaves compute the alignment at each internal node
•each alignment will be between either: (i) two sequences, (ii) two partial 
alignment, or (iii) a sequence and a partial alignment. 
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MUSCLE  
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm: 
1. draft progressive alignment -- similar to ClustalW but with 

• LE score for aligning profiles, 
• a more efficient tree building algorithm, and 
• a more efficient pairwise comparison (using k-mer counting). 

2. improved progressive alignment -- using the alignment from (1) 

• redefine the pairwise distances using the Kimura distance −ln (1 − D −
D2

5 )
• D is the fraction of matches.
• re-align. 

3. refinement -- deleting an edge in the guide tree creates two sub-groups of sequences with 
induced sub-alignments. 
• Extract those two sub-alignments and realign them. 
• Only keep the new alignment if the SP score is increased. 
• Stop when SP has not improved: in a predefined number of iterations or when all edges are 

visited. 



Some terminology

A E
D

B C

A

E
D

B

C

Unrooted Rooted



Tree Building Algorithms
Two major classes:

•Distance-based methods 
•for each pair of items, get some evolutionary distance (edit distance, 
melting temp for DNA hybridization, strength of antibody cross 
reactions)

•find a tree that "agrees" with the distances either ultametric or additive

•most cases in real life don't match this so you have to find a good 
approx. 


•Maximum-Parsimony methods 
•character-based data only (not necessarily DNA/RNA/Protein data)

• infer sequences at the internal nodes and maximize parsimony 
(minimize the mutations) along branches



Ultrametric Trees
Let D be a symmetric nxn matrix of real 
numbers. An ultrametric tree for D is a rooted 
tree T such that:


•T contains n leaves labeled by a unique row 
of D.

•Each internal node of T is leveled by one 
entry from D and has at least 2 children. 

•Along any path from the root to a leaf, the 
numbers labeling the internal nodes are 
strictly decreasing. 

•For any two leaves i,j of T, D(i,j) is the leavel 
of the least common ancestor of i and j in T. 

Therefore, T (if it exists) is a compact 
representation of D

A B C D E

A 0 8 8 5 3

B 8 0 3 8 8

C 8 3 0 8 8
D 5 8 8 0 5
E 3 8 8 5 0

A E
D

B C3
5

8

3



Additive-distance trees
Ultrametric is the "holy grail", but when its not able to be 
obtained, we can use a less stringent model. 


Definition 

•Let D be a symmetric n by n matrix where the 
numbers on the diagonal are all 0, and the off-
diagonal numbers are all strictly positive.

•Let T be an edge-weighted tree with at least n nodes, 
where n distinct nodes are labeled with rows of D. 

•Tree T is called an additive tree if for every pair of 
labeled nodes (i, j), the path from node i to node j has 
total weight (or distance) exactly D(i,j). 


Problem 
•Given a matrix D with 0s on the diagonals, and 
positive numbers in all other locations, find the 
additive tree T or determine that one does not exist. 

A B C D

A 0 3 7 9

B 0 6 8

C 0 6

D 0

A

B

C

D

2

1

3

2

4
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Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler 
answer is more likely to be correct" (when you hear hooves think horses not zebra). 

In sequence evolution each character in a sequence will be modified at most one time (sometimes 
called the infinite sites model). 

Therefore, we can change the sequence data into a binary labeling

•0 if the character is unchanged in this sequence

•1 if it has already been modified

Definition Given an n by m binary character matrix M, a phylogenetic tree for M is a rooted tree T with 
exactly n leaves that obeys the following:


•each of the n objects labels exactly 1 leaf of T 
•each of the m characters labels exactly 1 edge of T 
• for any object p, the characters that label the edges along the unique path from the root to the 
leaf specify all of the characters of p whose state is 1. 



Maximum Parsimony
The Maximum Parsimony Problem (sometimes called the Large Parsimony Problem) is stated as 
follows:


•Given a matrix M for a set S of n taxa 

•find the tree T wihch is leaf labeled by S and minimizes the edges that are labeled by character 
position changes.


This problem is NP-Hard 

Branch and Bound 
•start with a 3-leaf tree, add each leaf at each edge by breaking it and adding a new internal node

•computation tree grows exponentially


2-approximation

•find the minimum spanning tree in the leaf graph, convert into a phylogeny by adding edges

•O(n2m) time



Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n) 
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j 

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z 

•  

•form C by creating a new cluster root and connecting it to the two cluster roots 
with edge weights  and  respectively. 

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB
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Given a binary sequence B, define  
                                           

                                             ,  

where c∈{0,1} 

rankc(B, i) = {i′ ∣ 1 ≤ i′ ≤ i, B[i′ ] = c}
selectc(B, j) = arg min

i
{rankc(B, i) = j}

•the count of the number of c's occurring before position i in B, and the jth c in B
•note that rank0(B,i) = i - rank1(B,i)

Algorithms
•O(n log n) space, O(1) time -- store all of the rank values in an array
•O(n) space, O(n) time -- compute rank manually for each value
•O(n) space, O(1) time -- store a subset of precomputed rank values   
                                         (details omitted)
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Burrows-Wheeler Transform
Remember our old friend the suffix array? 
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T = mississippi$

SAT BWTT

BWTT = {
T [SAT [i] − 1] if SAT[i] > 1

$ if SAT[i] = 1



BWT Index

A BWT Index for a sequence T is a data structure with:

•the BWTT$ encoded as a wavelet tree; and

•the integer array C[0...σ], where C[c] stores the number of occurances of 
the characters less than c in T$


With the BWT Index, you can:

•construct the Suffix Array

•recover T in O(log n) per character



Counting Occurrences
Input


•pattern, P = p1,p2,p3,...,pm 
•count array, C

•BWTT$, L 

Output

•number of occurrences of P in T
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•count array, C
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Output

•number of occurrences of P in T
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•count array, C

•BWTT$, L 

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
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    c = pj
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    i = i - 1
if ep < sp then
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Input


•pattern, P = p1,p2,p3,...,pm 
•count array, C

•BWTT$, L 

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
    c = pj

      sp = C[c] + rankc(L,sp-1)+1
    ep = C[c] + rankc(L,ep)
    i = i - 1
if ep < sp then
    return 0
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Counting Occurrences
Input


•pattern, P = p1,p2,p3,...,pm 
•count array, C

•BWTT$, L 

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
    c = pj

      sp = C[c] + rankc(L,sp-1)+1
    ep = C[c] + rankc(L,ep)
    i = i - 1
if ep < sp then
    return 0
else
    return ep - sp + 1
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Given a string T a bidirectional BWT index is a data structure with the following 
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Bidirectional BWT

Given a string T a bidirectional BWT index is a data structure with the following 
operations:
• isLeftMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
• isRightMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
•enumerateLeft(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order
•enumerateRight(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order
•extendLeft(c,I(W,T),I(W,T)) -- returns the pair (I(cW,T),I(Wc,T))
•extendRight(c,I(W,T),I(W,T)) -- returns the pair (I(Wc,T),I(cW,T)) 
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the suffix tree of T where v is the 
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Suffix Tree Traversal

Given bidirectional BWT idx of string T 
(interval [1...n+1] represents the root)


Output pairs (v, |ℓ(v)|) for all noes v in 
the suffix tree of T where v is the 
interval of v in the suffix array of T$ 

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
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I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}
for ([i,j],[i',j']) ∈ I do

if idx.isRightMaximal(i',j') then



Suffix Tree Traversal

Given bidirectional BWT idx of string T 
(interval [1...n+1] represents the root)


Output pairs (v, |ℓ(v)|) for all noes v in 
the suffix tree of T where v is the 
interval of v in the suffix array of T$ 

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}
for ([i,j],[i',j']) ∈ I do

if idx.isRightMaximal(i',j') then
S.push(([i,j],[i',j'],d+1))



Computational Problem

Given 

•a reference genome G, and 

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence 
of G with a small number changes


Output

•the semi-global alignment of ri and G for all ri ∈ R with <k changes



Computational Problem

Given 

•a reference genome G, and 

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence 
of G with a small number changes


Output

•the semi-global alignment of ri and G for all ri ∈ R with <k changes

call these k-error mappings
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Only need to go to a depth of 2m since the best alignment 

can't be worse than deleting one string and inserting the other. 
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AGGCCTAAAGGGCCTT
A G G C C T A A A G G G C C T T

Only need to go to a depth of 2m since the best alignment 

can't be worse than deleting one string and inserting the other. 

We don't have the suffix tree!



Dynamic Programming using a BWT

define Branch(d,[i...j]): 
for c ∈ idx.enumerateRight(i,j) do 

process (c,d)  
if d = 2m and score > threshold do 

output alignment 
if d < 2m do 

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row 
using character c in row d
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Dynamic Programming using a BWT

define Branch(d,[i...j]): 
for c ∈ idx.enumerateRight(i,j) do 

process (c,d)  
if d = 2m and score > threshold do 

output alignment 
if d < 2m do 

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row 
using character c in row d

O(mσ)-time
O(m2+mσ)-space



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."



Bowtie2
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Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome
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Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

The key is that the re-mapping only 
happens from the end of MMP1 
rather than finding all maximal 

matchings then stitching

Genome

the "splice junctions" are inferred from the alignment



Take Aways for STAR

Non-contiguous alignment for RNA-Seq is not a totally solved problem


STAR is specifically designed to take introns into account during alignment


Algorithm is extendable to longer read lengths since it can ignore poor 
quality regions and chimeric reads


Large memory consumption, but fast due to the use of uncompressed SAs



TopHat
Using strict alignment critera, TopHat uses Bowtie to align reads to the whole 
genome


Construct the set of mapped sequences 

• the "islands" of sequence that map to the genome 

•using the assemble functionality of MAQ


Splice junctions usually happen with predictable bases

•consider all possible pairs as potential splice locations

•create a set of new sequences

•store the k-mer surrounding such locations as a seed for mapping


For each unmapped read

•extract all unique k-mers from the "high quality" region

•here k~10



TopHat
Using strict alignment critera, TopHat uses Bowtie to align reads to the whole 
genome


Construct the set of mapped sequences 

• the "islands" of sequence that map to the genome 

•using the assemble functionality of MAQ


Splice junctions usually happen with predictable bases

•consider all possible pairs as potential splice locations

•create a set of new sequences

•store the k-mer surrounding such locations as a seed for mapping


For each unmapped read

•extract all unique k-mers from the "high quality" region

•here k~10



Take Aways from TopHat

Uses existing software to do some of the heavy lifting


Strict parameters on the splice junctions make the algorithm fast


Limited in the splice junction sequence



De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb, 


there is an edge from the k-mer ax to the k-mer xb

k=1 k=2 k=3

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg



Sequence de Brujin Graphs
What is most commonly used in practice for genome assembly is a subset 
of the DBG based on a given sequence


This is sometimes in literature referred to as simply a de Brujin Graph

Image courtesy 10.1093/nar/gks678

(k+1)-mers

(k+1)-mer k-mers



Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Sca!olding

Re"ne

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/


SOAPdenovo



Jaccard Similarity
Measures the similarity of two sets of items A and B 
as:


J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B J(A, B) =

Images courtesy of Wikimedia Commons.
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Jaccard Similarity
Measures the similarity of two sets of items A and B 
as:


J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B

Used also used in computer vision, sometimes 
called the "Intersection over Union" (IoU) metric 

J(A, B) =

How would we use 
Jaccard for sequences? 

Images courtesy of Wikimedia Commons.



Jaccard Similarity
In sequence analysis we construct a sets of k-mers for each of the strings 
being compared
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Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular $k$-mers) 
can be time consuming (O(n) time)

Can we calculate it faster? 

Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+ 

•and the sets of k-mers for two string A and B, 
•What is the probability that ?minc∈A {h(c)} = minc∈B {h(c)}

Turns out that 
Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)
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Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B. 

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection? 



Min Hash Sketch with 1 Hash

The idea is that you choose the minimum n 
elements according to the hash h, and compute 
jaccard on these subsets


This subset of k-mers is called a "sketch"


Sometimes called "MinHash bottom sketching"


Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.



Minimizer Schemes

o

k-mer

minimizer

minimizer 
location

window

S

For a windows of w consecutive k-mers from a 
sequence S, a minimizer scheme selects the 
minimum according to an ordering o as a 
representative


Minimizer schemes have two special properties:

• two sequences with a long exact match must 

select the same k-mers

• there are no large gap between selected k-

mers


Use in k-mer counting, de Brujin graph 
construction, data structure sparsification, etc.
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Problems with Jaccard



Problem Formulation

Given:

•a read A, 

•a maximum per-base error rate, εmax, and  
•a reference genome, B. 

Goal:

• identify target positions in B where A will map with ≤ εmax|A| errors

• identify target positions Bi where:


 J(A, Bi) ≥ 𝒢(εmax, k) − δ

but only in expectation, so 𝛿 = (90% confidence interval) is subtracted to account for variance in the estimate𝔼 (J (A, Bi)) ≥ 𝒢(εmax, k)



Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers


This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough
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Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers


This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough

B
m = 3 k-mers

L[3] - L[1]



Stage 2

For every Bi in all potential places identified in stage 1 

•estimate the jaccard using the winnowed sketch

•retain it as a match if its larger than 𝜏

Algorithm 1: Stage 2 of mapping a read

Input: index M, stage 1 output T , s, ⌧
Output: P

1 L0 = {};
2 L0.insert(Wh(A));
3 for hx, yi 2 T do

4 i x;
5 j  x+ |A|;
6 L L0;
7 L.insert(getMinimizers(i, j));
8 J = solveJaccard(L);
9 if J � ⌧ then

10 P.append(hi,J i);
11 while i  y do

12 L.delete(getMinimizers(i,i+1));
13 L.insert(getMinimizers(j,j+1));
14 J = solveJaccard(L);
15 if J � ⌧ then

16 P.append(hi,J i);
17 i++;
18 j++;
19 Function getMinimizers(p,q):
20 return {h : hh, posi 2W (B), p  pos  q};
21 Function solveJaccard(L):

22 return

P
0ks�1 L[k]

s
;
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CANU
Follows one of the same basic procedure we saw for short read assembly:

•calculate the overlaps between reads

•decide on a layout for the reads

•construct contigs using the consensus sequences


Uses an adaptation of MHAP for overlaps which is an extension of MinHash

•frequent k-mers like those in loops can sometimes interfere with overlap 
prediction

•they use tf-idf (term frequency–inverse document frequency) weights to 
bias the hashes used



Networks in Biology

So far we have only talked about sequences

•Many interactions in biology are not 
captured in sequences

•We use graph theory to make biological 
conclusions



Combined Networks

The meaning of the nodes and edges used in a 
network representation depends on the type of 
data used to build the network and this should 
be taken into account when analysing it.



Topology Analysis
Analyzing the topological features of a 
network is a useful way of identifying 
relevant participants and substructures 
that may be of biological significance. 


Some methods

•centrality analysis

•topological clustering

•search for shortest paths

•motifs that are more often applied to 
networks with directionality



Annotation enrichment analysis



Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer 
which annotations are over-represented in a list of genes/proteins 
taken from a network. 


•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins 
(reference set; graph or annotation), what is the probability 
that x, or more, of these proteins belong to a functional 
category C shared by n of the N proteins in the reference set.


•The result of this test provides us with a list of terms that describe 
the list/network, or rather a part of it, as a whole.
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reference.


•This is a widely used technique that helps characterize the 
network as a whole or sub-sets of it, such as inter-connected 
communities found through topological clustering analysis.



Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer 
which annotations are over-represented in a list of genes/proteins 
taken from a network. 


•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins 
(reference set; graph or annotation), what is the probability 
that x, or more, of these proteins belong to a functional 
category C shared by n of the N proteins in the reference set.


•The result of this test provides us with a list of terms that describe 
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a 
reference.


•This is a widely used technique that helps characterize the 
network as a whole or sub-sets of it, such as inter-connected 
communities found through topological clustering analysis.

More complex versions of this technique can factor in continuous 
variables such as expression fold change.



Pathway reconstruction problem

Given

•weighted, directed interactome, G, with physical & regulatory interactions 
•receptors, S, in a signaling pathway of interest

•transcriptional regulators (TRs), T, in the same pathway 

•a parameter k


Find

•the k highest scoring loopless paths that begin at any receptor in S and 
end at any TR in T 
•the score of the path is the product of the edge weights (all in [0,1])



Method Setup
Modify the graph 
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v) 

  


•Let the cost of a path be the sum of the edges on the path. 

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t



Method Setup
Modify the graph 
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v) 

  


•Let the cost of a path be the sum of the edges on the path. 

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t

The least costly s→t path will be the highest weight s→t path



PathLinker

Algorithm

•Find the set of k highest scoring paths P1,P2,...,Pk where each Pi = (Vi,Ei) 
•Return Gk = ( ∪1≤i≤k Vi, ∪1≤i≤k Ei)



NetBox

Basic Algorithm

A. create human interactome (both 

interaction and pathway information)

B. find mutated or copy number variant 

genes for condition in question

C. extract these genes and their 

neighbors from the interactome

D. run the Newman-Girvan algorithm to 

find modules

E. analyze statistical significance



MashMap Idea
First find the winnowed representation of a read


Run the MinHash Sketch on this representation


Reduces the space the hash considers and speeds up computation


They define the winnowed-minhash estimate:


𝒥(A, Bi) =
S (W (A) ∪ W (Bi)) ∩ S (W (A)) ∩ S (W (Bi))

S (W (A) ∪ W (Bi))


