
Final Exam Review
CS 4390/5390  

Fall 2019

Exact String Matching

• Given string P, called the pattern, and a longer string T, called the text, the
exact matching problem is to find all occurrences, if any, of P in T.

• Example:

• P = "aba", T = "bbabaxababay"

• P occurs in T at positions: 3, 7, & 9

• Note, that 2 occurrences overlap

Exact String Matching
Naïve algorithm

• linearly compare the pattern to each starting position in the text O(nm)

Z-box preprocessing

• in linear time identifies the longest string at each position that matches a prefix
of that string

Boyer-Moore

•Match from right to left in the pattern, and move by more than one character

S
i i+Zi-1

(same string)

Zi j rjlj

Z-box

Suffix Trees

Ukkonen's algorithm builds a suffix tree in
O(m)-time using 3 rules:

•Rule 1 In the current tree S[i...j] ends at a leaf, append character
S[j+1] to the label.

•Rule 2 S[i...j] ends at an internal node or in the middle of a label, and
no extension starts with S[j+1], add new leaf.

•Rule 3 Some path from S[i...j] starts with S[j+1], do nothing.

xabxac

x

a

b

c

123456

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2
$

$

$

$

$
$

7 $

$
7

Generalized Suffix Trees
 123456

S1 = xabxa
S1 = babxba b

x

a

$ b

a

$

$

a

b

x

b

a

$

a

b

x

a

$

$

b

a

$

x a b x a $

b

a
$

$

1,3

2,3

2,5

2,1

1,5
2,6

2,2

1,2

2,4
1,4

1,1

Using Ukkonen's Algorithm

• build the tree for S1
• match S2 in the tree until a mismatch is

found at S2[j]

• restart the Ukkonen algorithm from j (all

suffixes of S[1...j-1] are already in the tree)

• repeat for S3, S4, ... , Sk

Suffix Arrays

A suffix array contains the starting
position of the suffixes of a string
when listed in lexicographic order.

One more concept:

lcp(i,j) for positions i and j is the
length of the longest common
prefix of the suffixes at position
i and j in the suffix array

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

1
1
4
0
0
1
0
2
1
3
-

Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-',
in arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball---
----ballcap

Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-',
in arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball---
----ballcap

baseball
ballca-p

Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-',
in arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball---
----ballcap

baseball
ballca-p

baseball
-ballcap

Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-',
in arbitrary locations along the sequences so that they end up wit the
same length and there are no two spaces at the same position of the two
augmented strings.

baseball---
----ballcap

baseball
ballca-p

baseball
-ballcap

How do we know which one of these is best?

Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub

alignments of S[1...i] and T[1...j]

Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub

alignments of S[1...i] and T[1...j]

• The recurrence relation (the base of any DP) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], −) delete
V(i, j − 1) + δ(− , T[j]) insert

Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub

alignments of S[1...i] and T[1...j]

• The recurrence relation (the base of any DP) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], −) delete
V(i, j − 1) + δ(− , T[j]) insert

• The initialization is: 
V(0,0) = 0 
V(0,j) = V(0,j-1) + 𝛿(-,T[j]) 
V(i,0) = V(i-1,0) + 𝛿(S[i],-)

Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub

alignments of S[1...i] and T[1...j]

• The recurrence relation (the base of any DP) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], −) delete
V(i, j − 1) + δ(− , T[j]) insert

• The initialization is: 
V(0,0) = 0 
V(0,j) = V(0,j-1) + 𝛿(-,T[j]) 
V(i,0) = V(i-1,0) + 𝛿(S[i],-) Optimal alignment score is in V(n,m)

Local Alignment
• Given two strings S and T, find the two substrings, A of S and B of T, with

the highest alignment score.

• Brute-force: Align all substrings of S with all substrings of T. There are

 substrings of S, and substrings of T. The total running time

would be O(n3m3)!

• Smith and Waterman [1981] developed an algorithm, similar to
Needleman-Wunch, that is able to find the optimal local alignment in
O(mn)-time.

(n
2) (m

2)

Smith-Waterman

• The recurrence relation 

• The initialization is: 
 V(0,j) = V(i,0) = 0

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], −) delete
V(i, j − 1) + δ(− , T[j]) insert

Semi-global Alignment
Ignored spaces Modification

The beginning of S Initialize column 0 to 0s

The end of S Search for the maximum value in the last column

The beginning of T Initialize row 0 to 0s

The end of T Search for the maximum value in the last row

T
S

Affine Gap Costs

• The one everyone uses!

• Attributed to Gotoh [1982]

• Define the function fa,b(k) =: a + b * k where a and b are tunable parameters
(if a=0, this is the same as before)

• Can still be solved in O(mn)-time and O(mn)-space, but we need a bit
more sophistication

Affine Gap Costs

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

13

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

Gotoh's Algorithm
Initialization

G(i, j) = max

G(i − 1,j − 1) + α if S[i] = T[i]
G(i − 1,j − 1) − β if S[i] = T[i]
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − γ
G(i − 1,j) − γ − δ

E(i, j) = max {E(i, j − 1) − γ
G(i, j − 1) − γ − δ

Recursion
G(0,j) = E(0,j) = − 1 * (γ + δj)
G(i,0) = F(i,0) = − 1 * (γ + δj)
E(i,0) = − ∞
F(0,j) = − ∞

An example

15

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

15

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

What do we even
mean by "best"?

Parametric Alignment

• when two parameters are free, there are only
O(n2) different regions

• the boundaries are always lines

• the boundaries can be found in O(n4)-time

𝔸2

𝔸1

Parametric Alignment

• when two parameters are free, there are only
O(n2) different regions

• the boundaries are always lines

• the boundaries can be found in O(n4)-time

𝔸2

𝔸1

𝔸3

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

17

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

17

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

50%

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

17

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

50% 33%

The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a
query string Q find the sting(s) S in D which is/are closest matches to Q
under a defined scoring function.

The (Sequence) Database Search Problem

Given a database D of sequences (DNA, Protein, Books, Web Pages) and a
query string Q find the sting(s) S in D which is/are closest matches to Q
under a defined scoring function.

Scoring functions are typically either

•Semi-global alignment -- The best possible alignment score between a
substring A of S and Q, or

•Local alignment -- The vest possible alignment score between a
substring A of S and a substring B of Q.

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

FastA/FastP
Step 1: Identify "hotspots" -- find k-mers that are shared
between the query and the database using a lookup table
(this table is 4k for DNA and RNA, 20k for Proteins)

Step 2: locating diagonal runs -- pairs (or larger groups) of
hot spots such that the distance between the hot-spots is
the same in both the query and the database sequence

Step 3: re-score the best diagonal runs -- rather than fixed
inter-spot scores based on length, rescore the alignments
using actual character matches

Step 4 (FastA): join diagonal runs -- using a fixed score
based on the locations of the regions, join them with a fixed
gap-style cost

Step 5 (FastA): (banded) Smith-Waterman -- using a fixed
score based on the locations of the regions, join them with a
fixed gap-style cost

CAACTTGCC

ACGGTTACGTAGGTCCG

GCGTAGGCAGAAGTTGCCTGCGT

ACGAAGTAGCCGTCAGTC

TAGTCCGTATGAAGTCGTAGTC

Query

Database

Basic Local Alignment Search Tool (BLAST)
Step 1: Query-preprocessing:

1. split the query into k-mers

2. create a set of neighbors of each k-mer, other

k-mers such that the replacement scores are
not too high (this can be done with a Σk lookup
table)

Step 2: Database scanning -- label any instance of a
neighbor of Q in any sequence S of D as a "hit",
collect all of these hits

Step 3: Hit extension -- for any sequence S in D, with
two hits (for protein, one for DNA) extend in either
direction without gaps until the score drops too low

Step 4: Gapped extension -- run modified Smith-
Waterman in each direction from the mid-point of the
hits until the alignment score goes too low.

ACCTAGAT
ACC
CCT
CTA
TAG
AGA
GAT

{ACC,TCC,AGC,ACG}

Database Query

Other Database Search Tools
MegaBLAST

•only for DNA but searches multiple sequences at once

BLAT (BLAST-Like Alignment Tool)

•only for DNA, indexes the database not the query

PatternHunter

•uses spaced-seeds rather than substings to search the database

PSI-BLAST (Position-Specific Iterated BLAST)

•updates the replacement matrix using an MSA until unchanged

QUASAR (Q-gram Alignment base on Suffix ARrays)

•uses the pigeon hole principle to find sequences in the database that are potential matches

LSH-ALL-PAIRS

•uses k-mer orderings to find probable matching sequences using a minimizer scheme

Multiple Sequence Alignment Problem
Given

•A set of sequences s1,s2,...,sk (of length n)

•An objective function

Find:

•an ℓ by k matrix (ℓ≥n)

•where row i contains the characters from sequence si in order with inserted gap characters

• that is optimal under the objective function.

Input

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP

Multiple Sequence Alignment Problem
Given

•A set of sequences s1,s2,...,sk (of length n)

•An objective function

Find:

•an ℓ by k matrix (ℓ≥n)

•where row i contains the characters from sequence si in order with inserted gap characters

• that is optimal under the objective function.

Output

A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

Input

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP

Multiple Sequence Alignment

Whats the objective function:

•most popular -- Sum-of-Pairs Objective:

•given some scoring function for a pairwise alignment PairScore(s1',s2')
the score of the multiple alignment is:

SPScore({s′ 1, s′ 2, . . . , s′ k}) := ∑
1≤i<j≤k

PairScore(s′ i, s′ j)

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

•yes! we can use the same dynamic programming methods we had for pairwise
alignment

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

•yes! we can use the same dynamic programming methods we had for pairwise
alignment
•assume there are only 3 sequences, then the recursion is the following:

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

•yes! we can use the same dynamic programming methods we had for pairwise
alignment
•assume there are only 3 sequences, then the recursion is the following:

V[i, j, k] = max

V[i − 1,j − 1,k − 1] +δ(s1[i], s2[j]) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i − 1,j − 1,k] +δ(s1[i], s2[j]) + δ(s2[j],′ −′) + δ(s1[i],′ −′)
V[i − 1,j, k − 1] +δ(s1[i],′ −′) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i, j − 1,k − 1] +δ(′ −′ , s2[j]) + δ(s2[j], s3[k]) + δ(′ −′ , s3[k])
V[i − 1,j, k] +2δ(s1[i],′ −′)
V[i, j − 1,k] +2δ(s2[j],′ −′)
V[i, j, k − 1] +2δ(s3[k],′ −′)

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

•yes! we can use the same dynamic programming methods we had for pairwise
alignment
•assume there are only 3 sequences, then the recursion is the following:

V[i, j, k] = max

V[i − 1,j − 1,k − 1] +δ(s1[i], s2[j]) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i − 1,j − 1,k] +δ(s1[i], s2[j]) + δ(s2[j],′ −′) + δ(s1[i],′ −′)
V[i − 1,j, k − 1] +δ(s1[i],′ −′) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i, j − 1,k − 1] +δ(′ −′ , s2[j]) + δ(s2[j], s3[k]) + δ(′ −′ , s3[k])
V[i − 1,j, k] +2δ(s1[i],′ −′)
V[i, j − 1,k] +2δ(s2[j],′ −′)
V[i, j, k − 1] +2δ(s3[k],′ −′)

What happens with 4 sequences? How many clauses are in the max? How big is V?

Finding an optimal MSA
Can we find an optimal multiple sequence alignment?

•yes! we can use the same dynamic programming methods we had for pairwise
alignment
•assume there are only 3 sequences, then the recursion is the following:

V[i, j, k] = max

V[i − 1,j − 1,k − 1] +δ(s1[i], s2[j]) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i − 1,j − 1,k] +δ(s1[i], s2[j]) + δ(s2[j],′ −′) + δ(s1[i],′ −′)
V[i − 1,j, k − 1] +δ(s1[i],′ −′) + δ(s2[j], s3[k]) + δ(s1[i], s3[k])
V[i, j − 1,k − 1] +δ(′ −′ , s2[j]) + δ(s2[j], s3[k]) + δ(′ −′ , s3[k])
V[i − 1,j, k] +2δ(s1[i],′ −′)
V[i, j − 1,k] +2δ(s2[j],′ −′)
V[i, j, k − 1] +2δ(s3[k],′ −′)

What happens with 4 sequences? How many clauses are in the max? How big is V?

O(k22knk)-time!!

The Center Star Method

D(S1,S2)

D(S1,S3)

D(S1,Sk-1)

D(S1,Sk)

S1

S2

S3

Sk-1

Sk

Sc = arg min
1≤i≤k ∑

1≤ j≤k

D(Si, Sj)

The final step is to build an alignment so that all of
the alignments between Sc and Si are satisfied.

Progressive Alignment
Similar to center star in that we use pairwise
alignments to help build multiple alignments.

Introduced by Feng and Doolittle in 1987.

Basic idea:

•compute pairwise alignment scores for
each pair of sequences

•generate a guide tree which ensures
similar sequences are near to each other

•align sequences (or groups) one-by-one
from the leaves of the tree

[from Balcan, et al. 2019, arXiv:1908.02894]

Progressive Alignment
Similar to center star in that we use pairwise
alignments to help build multiple alignments.

Introduced by Feng and Doolittle in 1987.

Basic idea:

•compute pairwise alignment scores for
each pair of sequences

•generate a guide tree which ensures
similar sequences are near to each other

•align sequences (or groups) one-by-one
from the leaves of the tree

[from Balcan, et al. 2019, arXiv:1908.02894]"Progressive alignment from consensus sequences"

ClustalW

Algorithm

ClustalW

Algorithm
•Calculate the pairwise alignments.(n

2)

ClustalW

Algorithm
•Calculate the pairwise alignments.(n

2)
•Compute the pairwise distance between sequences as where x is the
number of gap characters, and y is the number of matches.

1 −
x
y

ClustalW

Algorithm
•Calculate the pairwise alignments.(n

2)
•Compute the pairwise distance between sequences as where x is the
number of gap characters, and y is the number of matches.

1 −
x
y

•Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).

ClustalW

Algorithm
•Calculate the pairwise alignments.(n

2)
•Compute the pairwise distance between sequences as where x is the
number of gap characters, and y is the number of matches.

1 −
x
y

•Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).
•From the leaves compute the alignment at each internal node

ClustalW

Algorithm
•Calculate the pairwise alignments.(n

2)
•Compute the pairwise distance between sequences as where x is the
number of gap characters, and y is the number of matches.

1 −
x
y

•Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).
•From the leaves compute the alignment at each internal node
•each alignment will be between either: (i) two sequences, (ii) two partial
alignment, or (iii) a sequence and a partial alignment.

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:
1. draft progressive alignment -- similar to ClustalW but with

• LE score for aligning profiles,
• a more efficient tree building algorithm, and
• a more efficient pairwise comparison (using k-mer counting).

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:
1. draft progressive alignment -- similar to ClustalW but with

• LE score for aligning profiles,
• a more efficient tree building algorithm, and
• a more efficient pairwise comparison (using k-mer counting).

2. improved progressive alignment -- using the alignment from (1)

• redefine the pairwise distances using the Kimura distance −ln (1 − D −
D2

5)
• D is the fraction of matches.
• re-align.

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:
1. draft progressive alignment -- similar to ClustalW but with

• LE score for aligning profiles,
• a more efficient tree building algorithm, and
• a more efficient pairwise comparison (using k-mer counting).

2. improved progressive alignment -- using the alignment from (1)

• redefine the pairwise distances using the Kimura distance −ln (1 − D −
D2

5)
• D is the fraction of matches.
• re-align.

3. refinement -- deleting an edge in the guide tree creates two sub-groups of sequences with
induced sub-alignments.
• Extract those two sub-alignments and realign them.
• Only keep the new alignment if the SP score is increased.
• Stop when SP has not improved: in a predefined number of iterations or when all edges are

visited.

Some terminology

A E
D

B C

A

E
D

B

C

Unrooted Rooted

Tree Building Algorithms
Two major classes:

•Distance-based methods
•for each pair of items, get some evolutionary distance (edit distance,
melting temp for DNA hybridization, strength of antibody cross
reactions)

•find a tree that "agrees" with the distances either ultametric or additive

•most cases in real life don't match this so you have to find a good
approx.

•Maximum-Parsimony methods
•character-based data only (not necessarily DNA/RNA/Protein data)

• infer sequences at the internal nodes and maximize parsimony
(minimize the mutations) along branches

Ultrametric Trees
Let D be a symmetric nxn matrix of real
numbers. An ultrametric tree for D is a rooted
tree T such that:

•T contains n leaves labeled by a unique row
of D.

•Each internal node of T is leveled by one
entry from D and has at least 2 children.

•Along any path from the root to a leaf, the
numbers labeling the internal nodes are
strictly decreasing.

•For any two leaves i,j of T, D(i,j) is the leavel
of the least common ancestor of i and j in T.

Therefore, T (if it exists) is a compact
representation of D

A B C D E

A 0 8 8 5 3

B 8 0 3 8 8

C 8 3 0 8 8
D 5 8 8 0 5
E 3 8 8 5 0

A E
D

B C3
5

8

3

Additive-distance trees
Ultrametric is the "holy grail", but when its not able to be
obtained, we can use a less stringent model.

Definition

•Let D be a symmetric n by n matrix where the
numbers on the diagonal are all 0, and the off-
diagonal numbers are all strictly positive.

•Let T be an edge-weighted tree with at least n nodes,
where n distinct nodes are labeled with rows of D.

•Tree T is called an additive tree if for every pair of
labeled nodes (i, j), the path from node i to node j has
total weight (or distance) exactly D(i,j).

Problem
•Given a matrix D with 0s on the diagonals, and
positive numbers in all other locations, find the
additive tree T or determine that one does not exist.

A B C D

A 0 3 7 9

B 0 6 8

C 0 6

D 0

A

B

C

D

2

1

3

2

4

Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler
answer is more likely to be correct" (when you hear hooves think horses not zebra).

Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler
answer is more likely to be correct" (when you hear hooves think horses not zebra).

In sequence evolution each character in a sequence will be modified at most one time (sometimes
called the infinite sites model).

Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler
answer is more likely to be correct" (when you hear hooves think horses not zebra).

In sequence evolution each character in a sequence will be modified at most one time (sometimes
called the infinite sites model).

Therefore, we can change the sequence data into a binary labeling

•0 if the character is unchanged in this sequence

•1 if it has already been modified

Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the question, the simpler
answer is more likely to be correct" (when you hear hooves think horses not zebra).

In sequence evolution each character in a sequence will be modified at most one time (sometimes
called the infinite sites model).

Therefore, we can change the sequence data into a binary labeling

•0 if the character is unchanged in this sequence

•1 if it has already been modified

Definition Given an n by m binary character matrix M, a phylogenetic tree for M is a rooted tree T with
exactly n leaves that obeys the following:

•each of the n objects labels exactly 1 leaf of T
•each of the m characters labels exactly 1 edge of T
• for any object p, the characters that label the edges along the unique path from the root to the
leaf specify all of the characters of p whose state is 1.

Maximum Parsimony
The Maximum Parsimony Problem (sometimes called the Large Parsimony Problem) is stated as
follows:

•Given a matrix M for a set S of n taxa

•find the tree T wihch is leaf labeled by S and minimizes the edges that are labeled by character
position changes.

This problem is NP-Hard

Branch and Bound
•start with a 3-leaf tree, add each leaf at each edge by breaking it and adding a new internal node

•computation tree grows exponentially

2-approximation

•find the minimum spanning tree in the leaf graph, convert into a phylogeny by adding edges

•O(n2m) time

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

O(1)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

O(1)

O(1)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

O(1)

O(1)

O(n)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

O(1)

O(1)

O(n)

O(n)

Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•

•form C by creating a new cluster root and connecting it to the two cluster roots
with edge weights and respectively.

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 (D(A,F) + D(B,F) - D(A,B))

(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1
2 (D(A, B) + (uA − uB)) 1

2 (D(A, B) + (uB − uA))

O(n)
O(n2)

O(n)

O(n2)

O(1)

O(1)

O(n)

O(n)

O(n3) total time

Rank and Select
Given a binary sequence B, define  
  

 ,  

where c∈{0,1}

rankc(B, i) = {i′ ∣ 1 ≤ i′ ≤ i, B[i′] = c}
selectc(B, j) = arg min

i
{rankc(B, i) = j}

•the count of the number of c's occurring before position i in B, and the jth c in B
•note that rank0(B,i) = i - rank1(B,i)

Rank and Select
Given a binary sequence B, define  
  

 ,  

where c∈{0,1}

rankc(B, i) = {i′ ∣ 1 ≤ i′ ≤ i, B[i′] = c}
selectc(B, j) = arg min

i
{rankc(B, i) = j}

•the count of the number of c's occurring before position i in B, and the jth c in B
•note that rank0(B,i) = i - rank1(B,i)

Algorithms
•O(n log n) space, O(1) time -- store all of the rank values in an array

Rank and Select
Given a binary sequence B, define  
  

 ,  

where c∈{0,1}

rankc(B, i) = {i′ ∣ 1 ≤ i′ ≤ i, B[i′] = c}
selectc(B, j) = arg min

i
{rankc(B, i) = j}

•the count of the number of c's occurring before position i in B, and the jth c in B
•note that rank0(B,i) = i - rank1(B,i)

Algorithms
•O(n log n) space, O(1) time -- store all of the rank values in an array
•O(n) space, O(n) time -- compute rank manually for each value

Rank and Select
Given a binary sequence B, define  
  

 ,  

where c∈{0,1}

rankc(B, i) = {i′ ∣ 1 ≤ i′ ≤ i, B[i′] = c}
selectc(B, j) = arg min

i
{rankc(B, i) = j}

•the count of the number of c's occurring before position i in B, and the jth c in B
•note that rank0(B,i) = i - rank1(B,i)

Algorithms
•O(n log n) space, O(1) time -- store all of the rank values in an array
•O(n) space, O(n) time -- compute rank manually for each value
•O(n) space, O(1) time -- store a subset of precomputed rank values  
 (details omitted)

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T

how many Cs to the left of ?

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T

how many As or Cs to the left of ?

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T rank0(Br,18) = 8

how many As or Cs to the left of ?

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T rank0(Br,18) = 8

how many As or Cs to the left of ?

how many Cs to the left of ?

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T rank0(Br,18) = 8
rank1(Bv,8) = 4

how many As or Cs to the left of ?

how many Cs to the left of ?

Wavelet Trees
Generalize rank and select to alphabet Σ
•can create σ binary strings and use independently, σn(1+o(1)) space
•more efficient model uses n log σ(1+o(1)) bits, and O(log σ) time

Idea is to partition the alphabet and create a tree of bit vectors

rankC(T,18) =
A G T C G A T T A C C G T G C G A G C T C T G A
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A C A A C C C A C C A
0 1 0 0 1 1 1 0 1 1 0

G T G T T G T G G G T T G
0 1 0 1 1 0 1 0 0 0 1 1 0

Br

Bv Bw

r

v w

T rank0(Br,18) = 8
rank1(Bv,8) = 4

4

how many As or Cs to the left of ?

how many Cs to the left of ?

Burrows-Wheeler Transform
Remember our old friend the suffix array?

mississippi$
ississippi$

ssissippi$

sissippi$

issippi$

ssippi$

sippi$

ippi$

ppi$

pi$

i$

m

mi

mis

miss

missi

missis

mississ

mississi

mississip

mississipp

mississippi$12
11
8
5
2
1

10
9
7
4
6
3

i
p

s
s

m
$

p
i

s

s
i

i

T = mississippi$

SAT BWTT

Burrows-Wheeler Transform
Remember our old friend the suffix array?

mississippi$
ississippi$

ssissippi$

sissippi$

issippi$

ssippi$

sippi$

ippi$

ppi$

pi$

i$

m

mi

mis

miss

missi

missis

mississ

mississi

mississip

mississipp

mississippi$12
11
8
5
2
1

10
9
7
4
6
3

i
p

s
s

m
$

p
i

s

s
i

i

T = mississippi$

SAT BWTT

BWTT = {
T [SAT [i] − 1] if SAT[i] > 1

$ if SAT[i] = 1

BWT Index

A BWT Index for a sequence T is a data structure with:

•the BWTT$ encoded as a wavelet tree; and

•the integer array C[0...σ], where C[c] stores the number of occurances of
the characters less than c in T$

With the BWT Index, you can:

•construct the Suffix Array

•recover T in O(log n) per character

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)
 i = i - 1

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)
 i = i - 1
if ep < sp then

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)
 i = i - 1
if ep < sp then
 return 0

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)
 i = i - 1
if ep < sp then
 return 0
else

Counting Occurrences
Input

•pattern, P = p1,p2,p3,...,pm
•count array, C

•BWTT$, L

Output

•number of occurrences of P in T

i = m
(sp, ep) = (1,n)
while sp ≤ ep and i ≥ 1 do
 c = pj

 sp = C[c] + rankc(L,sp-1)+1
 ep = C[c] + rankc(L,ep)
 i = i - 1
if ep < sp then
 return 0
else
 return ep - sp + 1

Bidirectional BWT

Given a string T a bidirectional BWT index is a data structure with the following
operations:

Bidirectional BWT

Given a string T a bidirectional BWT index is a data structure with the following
operations:
• isLeftMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
• isRightMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise

Bidirectional BWT

Given a string T a bidirectional BWT index is a data structure with the following
operations:
• isLeftMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
• isRightMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
•enumerateLeft(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order
•enumerateRight(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order

Bidirectional BWT

Given a string T a bidirectional BWT index is a data structure with the following
operations:
• isLeftMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
• isRightMaximial(i,j) -- 1 if BWTT$[i...j] contains more than one value, 0 otherwise
•enumerateLeft(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order
•enumerateRight(i,j) -- return the distinct values BWTT$[i...j] in lexicographic order
•extendLeft(c,I(W,T),I(W,T)) -- returns the pair (I(cW,T),I(Wc,T))
•extendRight(c,I(W,T),I(W,T)) -- returns the pair (I(Wc,T),I(cW,T))

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}
for ([i,j],[i',j']) ∈ I do

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}
for ([i,j],[i',j']) ∈ I do

if idx.isRightMaximal(i',j') then

Suffix Tree Traversal

Given bidirectional BWT idx of string T
(interval [1...n+1] represents the root)

Output pairs (v, |ℓ(v)|) for all noes v in
the suffix tree of T where v is the
interval of v in the suffix array of T$

S = empty stack
S.push(([1...n+1], [1...n+1], 0))
while S is not empty do

([i,j],[i',j'],d) = S.pop()
output ([i,j],d)
Σ' = idx.enumerateLeft(i,j)
I = ∅
for c ∈ Σ' do

I = I ⋃ {idx.exgendLeft(c,[i,j],[i',j'])}
for ([i,j],[i',j']) ∈ I do

if idx.isRightMaximal(i',j') then
S.push(([i,j],[i',j'],d+1))

Computational Problem

Given

•a reference genome G, and

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence
of G with a small number changes

Output

•the semi-global alignment of ri and G for all ri ∈ R with <k changes

Computational Problem

Given

•a reference genome G, and

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence
of G with a small number changes

Output

•the semi-global alignment of ri and G for all ri ∈ R with <k changes

call these k-error mappings

Aligning reads

A
G
G
T
A
A

C
C

T
T

C
C

A
G
G
C
T
T

AGGCCTAAAGGGCCTT
A G G C C T A A A G G G C C T T

Only need to go to a depth of 2m since the best alignment

can't be worse than deleting one string and inserting the other.

Aligning reads

A
G
G
T
A
A

C
C

T
T

C
C

A
G
G
C
T
T

AGGCCTAAAGGGCCTT
A G G C C T A A A G G G C C T T

Only need to go to a depth of 2m since the best alignment

can't be worse than deleting one string and inserting the other.

We don't have the suffix tree!

Dynamic Programming using a BWT

define Branch(d,[i...j]):
for c ∈ idx.enumerateRight(i,j) do

process (c,d)
if d = 2m and score > threshold do

output alignment
if d < 2m do

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row
using character c in row d

Dynamic Programming using a BWT

define Branch(d,[i...j]):
for c ∈ idx.enumerateRight(i,j) do

process (c,d)
if d = 2m and score > threshold do

output alignment
if d < 2m do

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row
using character c in row d

O(mσ)-time

Dynamic Programming using a BWT

define Branch(d,[i...j]):
for c ∈ idx.enumerateRight(i,j) do

process (c,d)
if d = 2m and score > threshold do

output alignment
if d < 2m do

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row
using character c in row d

O(mσ)-time
O(m2+mσ)-space

Backtracking

Start by matching the exact sequence

If the algorithm reaches a point with no
matches swap out characters already
matched and restart search from that there

When ties occur, start with the character
with the lowest quality score, keep the rest
in a stack

Keep track of how many changes are made

Backtracking

Start by matching the exact sequence

If the algorithm reaches a point with no
matches swap out characters already
matched and restart search from that there

When ties occur, start with the character
with the lowest quality score, keep the rest
in a stack

Keep track of how many changes are made

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."

Bowtie2

Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA

Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA

Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ... (i + MML - 1)]
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
 R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length

The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome

Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ... (i + MML - 1)]
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
 R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length

The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome

Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ... (i + MML - 1)]
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
 R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length

The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome

Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ... (i + MML - 1)]
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
 R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length

The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome

the "splice junctions" are inferred from the alignment

Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ... (i + MML - 1)]
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
 R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length

The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

The key is that the re-mapping only
happens from the end of MMP1
rather than finding all maximal

matchings then stitching

Genome

the "splice junctions" are inferred from the alignment

Take Aways for STAR

Non-contiguous alignment for RNA-Seq is not a totally solved problem

STAR is specifically designed to take introns into account during alignment

Algorithm is extendable to longer read lengths since it can ignore poor
quality regions and chimeric reads

Large memory consumption, but fast due to the use of uncompressed SAs

TopHat
Using strict alignment critera, TopHat uses Bowtie to align reads to the whole
genome

Construct the set of mapped sequences

• the "islands" of sequence that map to the genome

•using the assemble functionality of MAQ

Splice junctions usually happen with predictable bases

•consider all possible pairs as potential splice locations

•create a set of new sequences

•store the k-mer surrounding such locations as a seed for mapping

For each unmapped read

•extract all unique k-mers from the "high quality" region

•here k~10

TopHat
Using strict alignment critera, TopHat uses Bowtie to align reads to the whole
genome

Construct the set of mapped sequences

• the "islands" of sequence that map to the genome

•using the assemble functionality of MAQ

Splice junctions usually happen with predictable bases

•consider all possible pairs as potential splice locations

•create a set of new sequences

•store the k-mer surrounding such locations as a seed for mapping

For each unmapped read

•extract all unique k-mers from the "high quality" region

•here k~10

Take Aways from TopHat

Uses existing software to do some of the heavy lifting

Strict parameters on the splice junctions make the algorithm fast

Limited in the splice junction sequence

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=1 k=2 k=3

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Sequence de Brujin Graphs
What is most commonly used in practice for genome assembly is a subset
of the DBG based on a given sequence

This is sometimes in literature referred to as simply a de Brujin Graph

Image courtesy 10.1093/nar/gks678

(k+1)-mers

(k+1)-mer k-mers

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Sca!olding

Re"ne

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

SOAPdenovo

Jaccard Similarity
Measures the similarity of two sets of items A and B
as:

J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B J(A, B) =

Images courtesy of Wikimedia Commons.

Jaccard Similarity
Measures the similarity of two sets of items A and B
as:

J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B

Used also used in computer vision, sometimes
called the "Intersection over Union" (IoU) metric

J(A, B) =

Images courtesy of Wikimedia Commons.

Jaccard Similarity
Measures the similarity of two sets of items A and B
as:

J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B

Used also used in computer vision, sometimes
called the "Intersection over Union" (IoU) metric

J(A, B) =

How would we use
Jaccard for sequences?

Images courtesy of Wikimedia Commons.

Jaccard Similarity
In sequence analysis we construct a sets of k-mers for each of the strings
being compared

Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular k-mers)
can be time consuming (O(n) time)

Can we calculate it faster?

Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular k-mers)
can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+

•and the sets of k-mers for two string A and B,
•What is the probability that ?minc∈A {h(c)} = minc∈B {h(c)}

Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular k-mers)
can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+

•and the sets of k-mers for two string A and B,
•What is the probability that ?minc∈A {h(c)} = minc∈B {h(c)}

Turns out that
Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B.

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B.

How many minimum k-mers from the union can we choose?

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B.

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection?

Min Hash Sketch with 1 Hash

The idea is that you choose the minimum n
elements according to the hash h, and compute
jaccard on these subsets

This subset of k-mers is called a "sketch"

Sometimes called "MinHash bottom sketching"

Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.

Minimizer Schemes

o

k-mer

minimizer

minimizer 
location

window

S

For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o as a
representative

Minimizer schemes have two special properties:

• two sequences with a long exact match must

select the same k-mers

• there are no large gap between selected k-

mers

Use in k-mer counting, de Brujin graph
construction, data structure sparsification, etc.

62

Problems with Jaccard

Problem Formulation

Given:

•a read A,

•a maximum per-base error rate, εmax, and
•a reference genome, B.

Goal:

• identify target positions in B where A will map with ≤ εmax|A| errors

• identify target positions Bi where:

 J(A, Bi) ≥ 𝒢(εmax, k) − δ

but only in expectation, so 𝛿 = (90% confidence interval) is subtracted to account for variance in the estimate𝔼 (J (A, Bi)) ≥ 𝒢(εmax, k)

Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers

This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough

Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers

This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough

B

Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers

This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough

B

Stage 1
Find all ranges in B that could be a match to A

•they have ≥ s𝜏 = m number of matching k-mers

This is actually performed somewhat in reverse

•first find all matching minimizers

•sort them by location

• in each range of m matches

•ask if they are they condensed enough

B
m = 3 k-mers

L[3] - L[1]

Stage 2

For every Bi in all potential places identified in stage 1

•estimate the jaccard using the winnowed sketch

•retain it as a match if its larger than 𝜏

Algorithm 1: Stage 2 of mapping a read

Input: index M, stage 1 output T , s, ⌧
Output: P

1 L0 = {};
2 L0.insert(Wh(A));
3 for hx, yi 2 T do

4 i x;
5 j x+ |A|;
6 L L0;
7 L.insert(getMinimizers(i, j));
8 J = solveJaccard(L);
9 if J � ⌧ then

10 P.append(hi,J i);
11 while i  y do

12 L.delete(getMinimizers(i,i+1));
13 L.insert(getMinimizers(j,j+1));
14 J = solveJaccard(L);
15 if J � ⌧ then

16 P.append(hi,J i);
17 i++;
18 j++;
19 Function getMinimizers(p,q):
20 return {h : hh, posi 2W (B), p  pos  q};
21 Function solveJaccard(L):

22 return

P
0ks�1 L[k]

s
;

2

CANU
Follows one of the same basic procedure we saw for short read assembly:

•calculate the overlaps between reads

•decide on a layout for the reads

•construct contigs using the consensus sequences

Uses an adaptation of MHAP for overlaps which is an extension of MinHash

•frequent k-mers like those in loops can sometimes interfere with overlap
prediction

•they use tf-idf (term frequency–inverse document frequency) weights to
bias the hashes used

Networks in Biology

So far we have only talked about sequences

•Many interactions in biology are not
captured in sequences

•We use graph theory to make biological
conclusions

Combined Networks

The meaning of the nodes and edges used in a
network representation depends on the type of
data used to build the network and this should
be taken into account when analysing it.

Topology Analysis
Analyzing the topological features of a
network is a useful way of identifying
relevant participants and substructures
that may be of biological significance.

Some methods

•centrality analysis

•topological clustering

•search for shortest paths

•motifs that are more often applied to
networks with directionality

Annotation enrichment analysis

Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set.

•The result of this test provides us with a list of terms that describe
the list/network, or rather a part of it, as a whole.

Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set.

•The result of this test provides us with a list of terms that describe
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a
reference.

•This is a widely used technique that helps characterize the
network as a whole or sub-sets of it, such as inter-connected
communities found through topological clustering analysis.

Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer
which annotations are over-represented in a list of genes/proteins
taken from a network.

•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins
(reference set; graph or annotation), what is the probability
that x, or more, of these proteins belong to a functional
category C shared by n of the N proteins in the reference set.

•The result of this test provides us with a list of terms that describe
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a
reference.

•This is a widely used technique that helps characterize the
network as a whole or sub-sets of it, such as inter-connected
communities found through topological clustering analysis.

More complex versions of this technique can factor in continuous
variables such as expression fold change.

Pathway reconstruction problem

Given

•weighted, directed interactome, G, with physical & regulatory interactions
•receptors, S, in a signaling pathway of interest

•transcriptional regulators (TRs), T, in the same pathway

•a parameter k

Find

•the k highest scoring loopless paths that begin at any receptor in S and
end at any TR in T
•the score of the path is the product of the edge weights (all in [0,1])

Method Setup
Modify the graph
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v)

•Let the cost of a path be the sum of the edges on the path.

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t

Method Setup
Modify the graph
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v)

•Let the cost of a path be the sum of the edges on the path.

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t

The least costly s→t path will be the highest weight s→t path

PathLinker

Algorithm

•Find the set of k highest scoring paths P1,P2,...,Pk where each Pi = (Vi,Ei)
•Return Gk = (∪1≤i≤k Vi, ∪1≤i≤k Ei)

NetBox

Basic Algorithm

A. create human interactome (both

interaction and pathway information)

B. find mutated or copy number variant

genes for condition in question

C. extract these genes and their

neighbors from the interactome

D. run the Newman-Girvan algorithm to

find modules

E. analyze statistical significance

MashMap Idea
First find the winnowed representation of a read

Run the MinHash Sketch on this representation

Reduces the space the hash considers and speeds up computation

They define the winnowed-minhash estimate:

𝒥(A, Bi) =
S (W (A) ∪ W (Bi)) ∩ S (W (A)) ∩ S (W (Bi))

S (W (A) ∪ W (Bi))

