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Comparison can be slow

We know calculating local alignments is O(h?)
*in the case of read overlapping if there are say 706 reads
*if reads are 10¢ bases each, thats 7079 computations!

Even hamming distance (O(n)) may be too slow.

Remember, finding overlaps is just step 1 of assembly!
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Measures the similarity of two sets of items A and B
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Used also used in computer vision, sometimes
called the "Intersection over Union" (loU) metric

|:I How would we use

Jaccard for sequences?
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Jaccard Similarity

In sequence analysis we construct a sets of k-mers for each of the strings
being compared
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Min-Hash Sketch

Calculating the union and intersection of a set of anything (in particular $k$-mers)
can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:
egiven a hash function on k-mers h: 2k—Z+
*and the sets of k-mers for two string Aand B,
«What is the probability that min ., {h(c)} = min.cg {h(c)}?

Turns out that
Pr, [mincE A {h(c)} = MIN,p {h(c)}] = J(A, B)
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Min-Hash Sketch
Why is Pr, [mincE 4 h(c)} = min g {h(c)}] = J(A, B)?

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,
it will be minimum for both A and B.

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection?



Min-Hash Sketch
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Min Hash Sketch with 1 Hash
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The idea Is that you choose the minimum n

elements according to the hash h, and compute
jaccard on these subsets

This subset of k-mers iIs called a "sketch"
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Sometimes called "MinHash bottom sketching” 2 6 67
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Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.



Minimizer Schemes

Another way to sketch a sequence is though the use of minimizer schemes

Here a set of k-mers for a sequence are selected by finding the minimum
K-mer In overlapping windows
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Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
seguence overlap computation

O(n?) alignments!
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Minimizer Schemes

Roberts, et al. (2004) introduced /
minimizer schemes as a way to

decrease the time needed for ‘-
seqguence overlap computation ’.

Only compare within bins 000
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Minimizer Schemes

 Minimizer schemes have two special properties:
* two sequences with a long exact match must select the same k-mers
* there are no large gap between selected k-mers
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Minimizer Schemes

 Minimizer schemes have two special properties:
* two sequences with a long exact match must select the same k-mers

* there are no large gap between selected k-mers

 Use Iin k-mer counting, de Brujin graph construction, data structure
sparsification, etc.
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Minimizer Schemes

For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o as a
representative
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Minimizer Schemes

e Changing the ordering used can greatly
Impact the number of unigue minimizers

e Can we find an order that minimizes the
number of minimizer locations
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Universal k-mer Set

A universal k-mer set Uk C 2k is a set of k-mers such that any window of w
consecutive k-mers must contain at least one element from the set
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Universal k-mer Set and Minimizer Ordering

e A universal k-mer set induces a family of
compatible orderings

* Orderings based on universal sets have better
performance then lexicographic or random
orders (Marcais, et al., 2017) Y
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e A universal k-mer set induces a family of
compatible orderings
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Universal k-mer Set and Minimizer Ordering

e Set Size
e Fraction of all k-mers in the universal set

e Density U umer
e Normalized count of minimizer locations in S
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Universal k-mer Set and Minimizer Ordering

e Set Size
e Fraction of all k-mers in the universal set

e Density U umer
e Normalized count of minimizer locations in S

e Sparsity
 Normalized count of windows in S with only
one umer (universal k-mer)

singleton
/window
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Universal k-mer Set and Minimizer Ordering

e Set Size
e Fraction of all k-mers in the universal set

* Expected Density Uk w umer
e Normalized count of minimizer locations in B;

 Expected Sparsity v ouu
 Normalized count of windows in By with only
one umer (universal k-mer)

singleton
/window
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Br is the de Brujin sequence of order L, it contains each
window exactly once
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Universal k-mer Set and Minimizer Ordering

e A universal k-mer set induces a family of
compatible orderings

* Orderings based on universal sets have better
performance then lexicographic or random
orders (Marcais, et al., 2017)

e Current methods cannot construct sets for
values of kK and w used In practice
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Can we construct universal k-mer sets that are
practical for use in minimizer schemes?
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Problems with Jaccard
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