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Comparison can be slow

We know calculating local alignments is O(n2)

• in the case of read overlapping if there are say 106 reads 

• if reads are 102 bases each, thats 1010 computations!  

Even hamming distance (O(n)) may be too slow.


Remember, finding overlaps is just step 1 of assembly!



Jaccard Similarity
Measures the similarity of two sets of items A and B 
as:


J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B J(A, B) =
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How would we use 
Jaccard for sequences? 
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Jaccard Similarity
In sequence analysis we construct a sets of k-mers for each of the strings 
being compared



Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular $k$-mers) 
can be time consuming (O(n) time)

Can we calculate it faster? 



Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular $k$-mers) 
can be time consuming (O(n) time)

Can we calculate it faster? 

Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+ 

•and the sets of k-mers for two string A and B, 
•What is the probability that ?minc∈A {h(c)} = minc∈B {h(c)}



Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular $k$-mers) 
can be time consuming (O(n) time)
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Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+ 

•and the sets of k-mers for two string A and B, 
•What is the probability that ?minc∈A {h(c)} = minc∈B {h(c)}

Turns out that 
Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)
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Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B. 

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection? 



Min-Hash Sketch

As you increase the number of hashes, 
you will get closer to the estimate of 
the real jaccard value


Finding that many independent hashes 
may be hard
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Min Hash Sketch with 1 Hash

The idea is that you choose the minimum n 
elements according to the hash h, and compute 
jaccard on these subsets


This subset of k-mers is called a "sketch"


Sometimes called "MinHash bottom sketching"


Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.



Minimizer Schemes

Another way to sketch a sequence is though the use of minimizer schemes


Here a set of k-mers for a sequence are selected by finding the minimum  
k-mer in overlapping windows
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Minimizer Schemes
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decrease the time needed for 
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Minimizer Schemes

Roberts, et al. (2004) introduced 
minimizer schemes as a way to 
decrease the time needed for 
sequence overlap computation

Only compare within bins
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Minimizer Schemes

• Minimizer schemes have two special properties:

• two sequences with a long exact match must select the same k-mers

• there are no large gap between selected k-mers

• Use in k-mer counting, de Brujin graph construction, data structure 
sparsification, etc.
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Minimizer Schemes

o

k-mer

minimizer

minimizer 
location window

S

For a windows of w consecutive k-mers from a 
sequence S, a minimizer scheme selects the 
minimum according to an ordering o as a 
representative
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o

• Changing the ordering used can greatly 
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o

• Changing the ordering used can greatly 
impact the number of unique minimizers


• Can we find an order that minimizes the 
number of minimizer locations
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Only some k-mers are used a minimizers



Universal k-mer Set

A universal k-mer set Uk,w ⊆ Σk is a set of k-mers such that any window of w 
consecutive k-mers must contain at least one element from the set
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Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• A universal k-mer set induces a family of 
compatible orderings


• Orderings based on universal sets have better 
performance then lexicographic or random 
orders (Marçais, et al., 2017)


• Current methods cannot construct sets for 
values of k and w used in practice
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Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• Set Size

• Fraction of all k-mers in the universal set


• Expected Density

• Normalized count of minimizer locations in BL 

• Expected Sparsity

• Normalized count of windows in BL with only 

one umer (universal k-mer)

singleton 
window

BL is the de Brujin sequence of order L, it contains each 
window exactly once
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Can we construct universal k-mer sets that are  
practical for use in minimizer schemes?



Problems with Jaccard


