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Networks in Biology

So far we have only talked about sequences

•Many interactions in biology are not 
captured in sequences

•We use graph theory to make biological 
conclusions



Protein-protein interaction networks

Represent some physical relationships between 
proteins

•central to practically every process in the cell 


Most common type of graph we will look at



Metabolic Networks

Represent biochemical reactions, 
allow an organism to

•grow

•reproduce

•respond to the environment

•maintain structure


Edge direction shows the metabolic 
flow or a regulatory effect



Genetic Interaction Networks

Represents the functional relationship between 
genes rather than physical


"Genetic interaction is the synergistic 
phenomenon where the phenotype resulting 
from simultaneous mutations in two or more 
genes is significantly different from the 
phenotype that would result from adding the 
effects of the individual mutations"



Cell Signaling Networks
Cell signalling is the communication system that controls cellular activities.


Signalling pathways represent the ordered sequences of events and model the 
information flow within the cell.


Systematically represented by two types of resources:

•Pathway databases (also known as 'process description' resources) such 
as Reactome, KEGG or Wikipathways. These aim to provide a formal 
representation of the current scientific consensus on cell signalling pathways. They 
are generated by manual curation and organise the information in the form of 
reactions, with substrates and products being affected by the action of catalysers. 
This information must be converted according to specific rules in order to be 
represented as a network. Some information loss can occur during this process.

•Reaction network databases (also known as 'activity flow' resources) such 
as Signor, SignaLink or SPIKE. These aim to capture known binary relationships in 
cell signalling, such as activation, phosphorylation, etc. They are generally 
manually curated, but not always. In contrast with the pathway databases, they are 
already graphs in the mathematical sense and require no transformation in order to 
be represented as a network.



Gene/transcriptional regulatory networks
Represents how gene expression is controlled


Gene regulation networks can be considered as a 
sub-type of cell signalling networks, focusing on a 
specific signalling event which is often the final stage 
of a signalling cascade.


Regulatory RNAs and other mechanisms can also 
form part of this type of network. 


Usually generated via databases representing 
consensus knowledge of gene 
regulation (e.g. Reactome or KEGG), although large-
scale experimental datasets are increasingly available.



Combined Networks

The meaning of the nodes and edges used in a 
network representation depends on the type of 
data used to build the network and this should 
be taken into account when analysing it.



Data Sources
Network data is inherently noisy and incomplete

•sometimes the evidence from multiple sources will not overlap

•sometimes it will be contradictory


Typical Sources:

•Manual curation -- researchers will crawl the scientific literature to look for 
evidence and manually put it into a large database. Size is limited, cost is high. 

•High-throughput datasets --  some lab methods can generate large 
networks, mainly PPI networks. Suffer from bias of the technique. Size is 
typically large. 

•Computational predictions -- Using sets of evidence to predict relationships 
not necessarily in the existing data, but not contradicted. 

•Text mining -- computationally extract information from literature using NLP.

Higher Quality

Lower Quality



Protein-protein interaction networks

Protein-protein interactions (PPIs) are essential to almost every process

•understanding PPIs is crucial for understanding cell physiology

•both in normal cells and disease states


PPI networks (PPIN) represent the physical contacts between proteins in the 
cell. These contacts:

•are specific;

•occur between defined binding regions in the proteins; and

•have a particular biological meaning (i.e., they serve a specific function).



Protein-protein interaction networks
PPI information can represent both transient and stable interactions:

•Stable interactions are formed in protein complexes (e.g. ribosome, 
haemoglobin).

•Transient interactions are brief interactions that modify or carry a protein, 
leading to further change (e.g. protein kinases, nuclear pore importins). 
They constitute the most dynamic part of the interactome.


Knowledge of PPIs can be used to:

•assign putative roles to uncharacterised proteins; 

•add fine-grained detail about the steps within a signalling pathway; or 

•characterise the relationships between proteins that form multi-molecular 
complexes such as the proteasome.



Interactome
The interactome is the totality of PPIs that happen in a 
cell, an organism or a specific biological context. 


The development of large-scale PPI screening techniques 
has caused an explosion in the amount of PPI data and 
the construction of ever more complex and complete 
interactomes. 


This experimental evidence is complemented by the 
availability of PPI prediction algorithms.


Our current knowledge of the interactome is 
both incomplete and noisy.

Yeast

HumanImages from Jeong et al. Nature 2001. 411 and Rual et al. Nature 2005: 437 



The Small World Effect
There is great connectivity between proteins


The network's diameter (the maximum number of 
steps separating any two nodes) is small, no 
matter how big the network is


Think "the 6 degrees of Kevin Bacon"


This it poses an interesting question: 

• if the network is so tightly connected, why 
don't perturbations in a single gene or protein 
have dramatic consequences for the network?



Scale-free networks

The majority of nodes (proteins) in scale-free 
networks have only a few connections to other 
nodes, whereas some nodes (hubs) are 
connected to many other nodes in the network


In PPI networks this "scale-free-ness" allows 
for:

•stability

• invariance in changes to scale

•vulnerability to targeted attack



Transitivity

The transitivity or clustering coefficient of a 
network is a measure of the tendency of the 
nodes to cluster together

•high transitivity means that the network 
contains communities or groups of nodes that 
are densely connected internally

•finding these communities is very important, 
because they can reflect functional modules 
and protein complexes

Image from Hsia et al. Int J Mol Sci. 2015: 16



Building a PPI Network



Measuring Network Confidence
It's important to know whether the interaction network can be trusted to 
represent a “real” biological interaction

•there is lots of noise, it's important to be stringent when evaluating the 
data

•also, can't just filter stuff since the interactome coverage is incomplete



Measuring Network Confidence
It's important to know whether the interaction network can be trusted to 
represent a “real” biological interaction

•there is lots of noise, it's important to be stringent when evaluating the 
data

•also, can't just filter stuff since the interactome coverage is incomplete

Strategies for measuring reliability:

•Contextual biological information regarding the proteins in the interaction. 


-For example, overlapping co-expression patterns.

•Count the number of times times an interaction is reported in the literature.


-This is a popular and straightforward approach.

•Ensemble methods that integrate different strategies into a single score.



Measuring Network Confidence
MIscore assesses the reliability of protein-protein interaction 
data based on the use of standards. 

•It gives an estimation of confidence weighting on all 
available evidence for an interacting pair of proteins. 

•The method weights evidence provided from:


-number of publications;

-detection method;

-interaction evidence type.



Measuring Network Confidence
MIscore assesses the reliability of protein-protein interaction 
data based on the use of standards. 

•It gives an estimation of confidence weighting on all 
available evidence for an interacting pair of proteins. 

•The method weights evidence provided from:


-number of publications;

-detection method;

-interaction evidence type.

Different interaction detection methods and interaction types 
have different weights, assigned by a group of expert curators. 

•These parameters are aggregated for each interacting pair 
and then normalized, giving a quantitative measure of how 
much experimental evidence for a given interaction.



Topology Analysis
Analyzing the topological features of a 
network is a useful way of identifying 
relevant participants and substructures 
that may be of biological significance. 


Some methods

•centrality analysis

•topological clustering

•search for shortest paths

•motifs that are more often applied to 
networks with directionality
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The definition of ‘central’ varies with the context or purpose of our analysis. 
Centrality can be measured using different metrics and criteria:
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the network and the importance we give to its value depends strongly 
on the network's size.



Centrality Analysis
The definition of ‘central’ varies with the context or purpose of our analysis. 
Centrality can be measured using different metrics and criteria:

•Degree of the nodes
-As we saw earlier, nodes with a high degree (hubs) are key in 
maintaining some characteristics of scale-free networks

-This is a local measure since it does not take into account the rest of 
the network and the importance we give to its value depends strongly 
on the network's size.

•Global centrality measures
-Global centrality measures take into account the whole of the network. 
-Two of the most widely used global centrality measures are closeness 
and betweenness centralities.



Centrality Analysis
The definition of ‘central’ varies with the context or purpose of our analysis. 
Centrality can be measured using different metrics and criteria:

•Degree of the nodes
-As we saw earlier, nodes with a high degree (hubs) are key in 
maintaining some characteristics of scale-free networks

-This is a local measure since it does not take into account the rest of 
the network and the importance we give to its value depends strongly 
on the network's size.

•Global centrality measures
-Global centrality measures take into account the whole of the network. 
-Two of the most widely used global centrality measures are closeness 
and betweenness centralities.

•Other measures of centrality
-Often calculated using random walks.
-Can be combined with the weights assigned to nodes or edges in the 
graph to influence the centrality calculation derived from other features. 

-The method used by the Google PageRank.
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the left and the calculations to get the closeness centrality 
on the right. 



Closeness
Closeness centrality is estimates how fast the flow of 
information would be through a given node to other nodes.

Measures how short the shortest paths are from a node to 
all other nodes. 
•Typically expressed as the normalized inverse of the 
sum of the topological distances in the graph. 

In the example shown the distance matrix for the graph on 
the left and the calculations to get the closeness centrality 
on the right. 
•Node B is the most central node according to these 
parameters.
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Betweenness
Betweenness centrality is based on communication flow. 

•Nodes with a high betweenness centrality are interesting 
because they lie on communication paths and can control 
information flow. 
•These nodes can represent important proteins in signaling 
pathways and can form targets for drug discovery.
• It is basically defined as the number of shortest paths in 
the graph that pass through the node divided by the total 
number of shortest paths.
•Measures how often a node occurs on all shortest paths 
between two nodes. 

-The betweenness of a node N is calculated considering 
couples of nodes (v1, v2) and counting the number of 
shortest paths linking those two nodes, which pass 
through node N.



Clustering analysis
Community analysis help reduce network complexity and extract functional modules


•Community / Cluster 

-A group of nodes that are more connected within themselves than with 
others. 


-Two categories in PPI Networks: functional modules and protein complexes.

•Module 


-Exchangeable functional units in which the nodes (proteins) do not have to be 
interacting in the same time or space. 


-Its functional properties do not change when it is placed in a different context.

•Complex 


-A group of proteins that interact with each other at the same time and in the 
same space, forming relatively stable multi-protein machinery. 


•Clique 

-A subset of nodes in which every node is connected with every other member.


•Motif 
-Statistically over-represented sub-graphs in a network. 

-They correspond with a pattern of connections that generates a characteristic 
dynamical response (e.g. a negative feedback loop). 


-The goal is often to find functional modules or protein complexes that execute 
defined biological functions.



Clustering analysis
Methods that exclusively use the topology of the network to find closely-connected components are 
known as 'community detection methods'. 


•No assumptions are made about the internal structure of these communities.


Finding the best community structure is algorithmically extremely complex, only possible for very 
small networks.


Many approximation methods have been developed. 

•Clique-percolation method

•Markov Clustering Algorithm (MCL)

•Fuzzy C-Means

•Affinity Propagation


Other methods combine topology of the network and some external property, such as protein 
expression values. 


•For instance connected regions within a network with differential expression.

• Chinese Whispers Clustering

• Label Propagation Clustering

• Newman-Girvan fast greedy algorithm, and  
• the MCODE algorithm.



Newman-Girvan
Developed for the study of networks in general, with a special focus on 
social and biological networks.
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Newman-Girvan
Developed for the study of networks in general, with a special focus on 
social and biological networks.

Uses the edge betweenness centrality measure. 

•Edges that connect different communities have higher centrality values, 
since a larger proportion of shortest paths will pass through them.

Method

•use the edge betweenness centrality scores to rank the edges, 

•remove the most central edges

•re-calculates the betweenness scores until no edges are left.

•Edges affected by the removal are part of the same community.

Can be considered a ‘naïve’ approach that will define communities even 
when they are only marginally more connected than the rest of the network.



MCODE
Developed to find protein complexes in PPI networks.


•Considered to be more stringent than the Newman-Girvan algorithm,

• It aims to find only those sub networks that are very highly 
interconnected, representing relatively stable, multi-protein complexes 
that function as a single entity in time and space.
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2. Molecular complex prediction: starting with the highest-weighted 

node (seed), recursively move out, adding nodes to the complex 
that are above a given threshold.


3. Post-processing: applies filters to improve the cluster quality.



MCODE
Developed to find protein complexes in PPI networks.


•Considered to be more stringent than the Newman-Girvan algorithm,

• It aims to find only those sub networks that are very highly 
interconnected, representing relatively stable, multi-protein complexes 
that function as a single entity in time and space.

The algorithm uses a three-stage process:

1. Weighting: a higher score is given to those nodes whose 

neighbors are more interconnected.

2. Molecular complex prediction: starting with the highest-weighted 

node (seed), recursively move out, adding nodes to the complex 
that are above a given threshold.


3. Post-processing: applies filters to improve the cluster quality.

Stringency -- how interconnected the nodes within a sub-network must be 
in order to be considered a separate community. 


•Changes depending on the biological question underlying the analysis.



Annotation enrichment analysis



Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer 
which annotations are over-represented in a list of genes/proteins 
taken from a network. 


•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins 
(reference set; graph or annotation), what is the probability 
that x, or more, of these proteins belong to a functional 
category C shared by n of the N proteins in the reference set.


•The result of this test provides us with a list of terms that describe 
the list/network, or rather a part of it, as a whole.
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Annotation enrichment analysis
Annotation enrichment analysis uses gene/protein annotations to infer 
which annotations are over-represented in a list of genes/proteins 
taken from a network. 


•Annotation tools perform statistical test tries to that answer:

-When sampling X proteins (test set) out of N proteins 
(reference set; graph or annotation), what is the probability 
that x, or more, of these proteins belong to a functional 
category C shared by n of the N proteins in the reference set.


•The result of this test provides us with a list of terms that describe 
the list/network, or rather a part of it, as a whole.

This analysis is most frequently performed using GO annotation as a 
reference.


•This is a widely used technique that helps characterize the 
network as a whole or sub-sets of it, such as inter-connected 
communities found through topological clustering analysis.

More complex versions of this technique can factor in continuous 
variables such as expression fold change.



Limitations of annotation enrichment
Annotation enrichment is limited by the annotations themselves. 

•Certain areas of biology are more thoroughly annotated and better described than 
others, with more detail and more accurate terms for well-known processes. 

•At the level of the proteins, more "popular" proteins are better annotated. This 
introduces a certain bias into the statistical analysis.



Limitations of annotation enrichment
Annotation enrichment is limited by the annotations themselves. 

•Certain areas of biology are more thoroughly annotated and better described than 
others, with more detail and more accurate terms for well-known processes. 

•At the level of the proteins, more "popular" proteins are better annotated. This 
introduces a certain bias into the statistical analysis.

GO terms can be assigned either by

•a human curator who performs careful, manual annotation or 

•by computational approaches that use the basis of manual annotation to infer which 
terms would properly describe uncharted gene products. 

•They use a number of different criteria that always refer to annotated gene products, 
such as sequence or structural similarity or phylogenetic closeness. 

•The importance of the computationally derived annotations is quite significant, since 
they account for roughly 99% of the annotations that can be found in GO.
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Simplifying the interpretation of annotation 
enrichment results

The data sources can be very complex and detailed in their annotation leading to the generation 
of overwhelmingly complicated networks of inter-related and similar terms.

The simplest approach is to use simplified ontologies. 
•Use ontologies where fine detailed terms are removed and assigned to broader, more general parent terms
•Represent the results as a network of terms, where directed edges represent term relationships as defined 
in the ontology used. 

-Allows tools from graph theory to be used to reorganize the layout of the network to uncover 
communities inside these terms networks which helps to simplify the output. BiNGO only provides the 
network view, so other tools are required to further simplify the analysis. 

•Use the output from some of the most popular annotation enrichment tools and apply clustering and 
automatic layout techniques to overlap similar gene sets and provide a simplified representation of 
annotation enrichment results. 

-Especially useful when comparing results from different sets, i.e. two different conditions.  

It is important to know the limitations of the annotation resource, be aware of the inherent complexity of the 
results. Network analysis techniques can help simplify the interpretation of these results.



Summary

Biological Networks

•Network biology makes use of the tools provided by graph theory to 
represent and analyse complex biological systems.

•There are several types of biological networks: genetic, metabolic, cell 
signaling etc. 

•Networks are represented by nodes and edges. Nodes represent 
different entities (e.g. genes or proteins) and edges convey information 
about how the nodes are linked.



Summary

Protein-Protein Interaction Networks

•Small-world effect: Network diameter is usually small (~ 6 steps), no 
matter how big the network is.

•Scale-free: A small number of nodes (hubs) are lot more connected than 
the average node.

•Transitivity: The networks contain communities of nodes that are more 
connected internally than they are to the rest of the network.



Summary
Analyzing PPI Networks

•Several tools are available for PPIN analysis. 

•It is important to be aware of the type and quality of the data used. Confidence 
scoring tools such as MIscore can help select the best characterized interactions.

•Two of the most used topological methods to analyze PPINs are:


-Centrality analysis: Which identifies the most important nodes in a network, using 
different ways to calculate centrality.


-Community detection: Which aims to find heavily inter-connected components 
that may represent protein complexes and machineries


•Annotation enrichment analysis is a tool often used when analyzing PPINs. 

-It uses resources such as the Gene Ontology (GO) or Reactome to infer which 
annotations are over-represented in a list of genes or proteins. 


-It can produce complex results that can be simplified using network analysis tools.



PathLinker



Pathway reconstruction problem

Given

•weighted, directed interactome, G, with physical & regulatory interactions 
•receptors, S, in a signaling pathway of interest

•transcriptional regulators (TRs), T, in the same pathway 

•a parameter k


Find

•the k highest scoring loopless paths that begin at any receptor in S and 
end at any TR in T 
•the score of the path is the product of the edge weights (all in [0,1])



Method Setup
Modify the graph 
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v) 

  


•Let the cost of a path be the sum of the edges on the path. 

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t



Method Setup
Modify the graph 
•Add an extra source node s and an extra sink node

•add edges (s,x) for x ∈ S

•add edges (y,t) for y ∈ T

•assign the following costs to each edge (u,v) 

  


•Let the cost of a path be the sum of the edges on the path. 

cuv = {−log(wuv) if u, v ∈ V∖{s, t}
0 if u = s or v = t

The least costly s→t path will be the highest weight s→t path



Yen's Algorithm
Assume you know some set of i-1 shortest s-t paths in G and you want to 
find the ith

•the new path will deviate from one of the previous path at some vertex


For each i'<i and for all vertices j in the path

•create a new graph G' that removes all vertices on the path from s to j

•remove all outgoing edges from j that are in a previously found path

•run Dijkstra's algorithm to find the smallest j-t path


Path i is then the shortest path found by extending from all possible i' and j 

This is O(kn(m+n log n))-time



Using the A* Algorithm

Let h(v) = dG(v) where dG is the shortest v-t path in G 
•computed once in advance for all v


Change the priority queue in Dijkstra's algorithm from cuv to 
cuv + h(v) 

Does not change the asymptotic run time of Yen's algorithm, 
but improves running time in practice



PathLinker

Algorithm

•Find the set of k highest scoring paths P1,P2,...,Pk where each Pi = (Vi,Ei) 
•Return Gk = ( ∪1≤i≤k Vi, ∪1≤i≤k Ei)



PathLinker Results
Since G(k-1)⊆Gk the graphs grow smoothly with k.


Precision and recall are measured by ranking the nodes and edges in order 
of when they first appear and compare them to some reference. 

(a) Precision and recall of the interactions in pathway 
reconstructions computed by PATHLINKER and other algorithms. 
(b) Precision and recall of PATHLINKER and RWR without 
considering interactions adjacent to the pathway (distance=1).



PathLinker Results

Blue triangles: Wnt receptors; 
yellow squares: Wnt TRs, 
green edges: NetPath interactions, 
purple edges: KEGG interactions that are not present in NetPath



NetBox



NetBox

Basic Algorithm

A. create human interactome (both 

interaction and pathway information)

B. find mutated or copy number variant 

genes for condition in question

C. extract these genes and their 

neighbors from the interactome

D. run the Newman-Girvan algorithm to 

find modules

E. analyze statistical significance



Curating the Interactome

Data was sourced from:

•the Human Protein Reference Database 
(interaction data)

•Reactome (pathways)

•NCI/Nature Pathway Interaction Map 
(pathways)

•MSKCC Cancer Cell Map (pathways)


Converted from complex mappings (input, output, 
catalyst) to a binary network



Curating the Interactome

Data was sourced from:

•the Human Protein Reference Database 
(interaction data)

•Reactome (pathways)

•NCI/Nature Pathway Interaction Map 
(pathways)

•MSKCC Cancer Cell Map (pathways)


Converted from complex mappings (input, output, 
catalyst) to a binary network
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Create the condition graph
Create an empty graph G


For each altered gene X 
•find all neighbors of X in the interactome

•add the neighbors and X to G


Prune

•any gene with degree 1 (they don't lead to any links between genes)

•for all other (non-altered genes) use Benjiamini-Horchberg correction to 
find the probability that these genes are included by random chance

•remove any genes with p-value > 0.05



Modularity Score
The fraction of edges that connect noces within modules minus the 
expected value of that quantity:


 


•NM -- number of modules

• ls -- number of edges in module s

•L -- number of edges in the graph

•ds -- sum of the degrees of the nodes in s


Random network M→0, strong modularity M→1

M = ∑
1≤s≤NM

[ ls
L

− ( ds

2L )
2

]



Module detection

Using a modified Newman-Girvan:

1. use the edge betweenness centrality scores to rank the edges, 

2. remove the most central edge

3. calculate M on the remaining graph

4. go to 1 until no edges are left

5. return the graph that lead to the highest value of M



Assessing Significance 
Global Random Gene Set

•assesses the level of global connectivity in the network being tested 
•generate a random set of genes the size of the set of altered genes

•compare the size of the largest connected component in the networks

•compute the probability the random network component is smaller


Local Random Rewiring

•assesses the significance of the modularity observed

•generate random links between genes in the network

•each node will still have the same degree and network size is the same

•measure the modularity score of this new network



NetBox Results
Network modules identified in Glioblastoma.


A. Modules are densely connected sets of 
altered genes that may reflect oncogenic 
processes. 

‣10 modules were identified, the largest of 
which are shown. 

‣Linker genes, indicated in red, are not 
altered in Glioblastoma, but are statistically 
enriched for connections to Glioblastoma-
altered genes.


B. The observed modularity of the GBM network 
(0.519) is compared with 1000 randomly 
rewired networks (average 0.296, standard 
deviation 0.058). 

‣z-score, or scaled modularity score, of 3.84.



NetBox Results
Automated network analysis approach is in close agreement with 
previous manually curated pathway analysis approach.


•The original pathway analysis of TCGA glioblastoma datasets 
was derived by mapping observed gene alterations onto a 
manually curated GBM-specific network, based on the 
glioblastoma literature. 

•This non-algorithmic analysis identified driver alterations in the 
p53, RB and PI3K pathways. 

•Our automated network analysis approach is in close 
agreement with these results (top: P53/Rb; bottom: PI3K). The 
one main exception is that network analysis does not identify 
NF1 as a participant in the PI3K module. Additional candidate 
driver genes identified by network analysis, including AGAP2, 
are identified and annotated on the right. 

•Percentage values after each newly identified candidate driver 
indicate percent of cases with genetic alterations (sequence 
mutations, homozygous deletions, or multi-copy amplifications) 
across the 84 TCGA GBM cases analyzed.



NetBox Results
Network analysis identifies three additional altered 
modules, including the DCTN2 module, which is 
involved in microtubule organization.


•Each of the altered modules is implicated by 
homozygous deletions or multi-copy 
amplifications across the 84 analyzed GBM 
cases. 

•Each module is annotated with Gene Ontology 
enrichment, chromosome location, statistical 
significance of copy number alteration against a 
background model of random aberrations, as 
determined by RAE copy number analysis; 
assessment of correlation between copy number 
and mRNA expression, and genomic signature 
across 84 GBM cases.


