
Quick plug
Dr. DeBlasio is giving a talk at the Biological Sciences Seminar

•Friday 11 October 2019, 12:30-1:30

•Biological Sciences Research Building, Room 2.168


Toward building an automated bioinformatician: parameter advising for improved scientific discovery

Modern scientific software has a large number of tunable parameters that need to be adjusted to ensure computational performance and accuracy of the results. When 
these parameter choices are made incorrectly we may overlook significant results or falsely report insignificant ones. Optimizing the parameter choices for one input may 
not provide an assignment that's good for another, so this parameter optimization process typically needs to be repeated for each new piece of data. Standard machine 
learning methods for solving this problem need to repeatedly run the software which may not be suitable in practice. Because of the time consumption required to 
optimize parameters and the possible loss of accuracy that can result when chosen incorrectly, the default parameter vector that are provided by the tool developer is 
often used. These defaults are designed to work well on average, but most interesting cases are rarely “average”.

In this talk, I will describe my first steps in automatically learning the correct program configuration for biological applications using a framework we call “Parameter 
Advising”. To apply this framework to the problem of multiple sequence alignment we developed an accuracy estimator, called Facet, to help choose alignments since no 
ground truth is available in practice. When we use Facet for advising on the Opal aligner we boost accuracy by 14.6% on the hardest-to-align benchmarks. For the 
reference-based transcript assembly problem, when applying parameter advising to the Scallop assembler we see an increase in accuracy of 28.9%. The framework is 
general and can be extended to other problems in computational biology and beyond. I will discuss possible areas where parameter advising could be used to 
automatically learn to run complex analysis software



Office Hours

Do my current office hours work for everyone? 


Would a different time be better? 

•move Wednesday to Friday? 

•move to 4? 



Phylogenetics
CS 4390/5390



Plan

Background


Models

•Ultrametric

•Additive-distance

•Parsimony


Algorithms

•Neighbor Joining

•Maximum-parsimony



Why?
Evolution theory says all existing organisms are derived from the same common ancestor, and new species arise by splitting 
one population into to (or more) pieces that don't cross-breed.


As computer scientists, this means that we (should be able to) represent evolution as a rooted tree with all exigent species as 
leaves. 


"... the great Tree of Life fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-
branching and beautiful ramifications" -Darwin, The Origin of Species


This view can be seen at many scales:

https://www.youtube.com/watch?v=plVk4NVIUh8

From Kishony Lab at Harvard Med School 

https://www.youtube.com/watch?v=plVk4NVIUh8


Why?
Evolution theory says all existing organisms are derived from the same common ancestor, and new species arise by splitting 
one population into to (or more) pieces that don't cross-breed.


As computer scientists, this means that we (should be able to) represent evolution as a rooted tree with all exigent species as 
leaves. 


"... the great Tree of Life fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-
branching and beautiful ramifications" -Darwin, The Origin of Species


This view can be seen at many scales:

https://www.youtube.com/watch?v=plVk4NVIUh8

From Kishony Lab at Harvard Med School 

https://www.youtube.com/watch?v=plVk4NVIUh8


Why?
Evolution theory says all existing organisms are derived from the same common ancestor, and new species arise by splitting 
one population into to (or more) pieces that don't cross-breed.


As computer scientists, this means that we (should be able to) represent evolution as a rooted tree with all exigent species as 
leaves. 


"... the great Tree of Life fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-
branching and beautiful ramifications" -Darwin, The Origin of Species


This view can be seen at many scales:

https://www.youtube.com/watch?v=plVk4NVIUh8

From Kishony Lab at Harvard Med School 

https://www.youtube.com/watch?v=plVk4NVIUh8


Why?
Evolution theory says all existing organisms are derived from the same common ancestor, and new species arise by splitting 
one population into to (or more) pieces that don't cross-breed.


As computer scientists, this means that we (should be able to) represent evolution as a rooted tree with all exigent species as 
leaves. 


"... the great Tree of Life fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-
branching and beautiful ramifications" -Darwin, The Origin of Species


This view can be seen at many scales:

https://www.youtube.com/watch?v=plVk4NVIUh8

From Kishony Lab at Harvard Med School 

https://www.youtube.com/watch?v=plVk4NVIUh8


Some terminology

A E
D

B C

A

E
D

B

C

Unrooted Rooted



Biological Methods/Controversy

Three major methods used "historically":

•evolutionary taxonomy

•phenetics (numerical taxonomy)

•cladistics. 


Argument over which one is best. 


This would determine the "ground truth" trees, or how to compare computed 
trees with each other. 



Tree Building Algorithms
Two major classes:

•Distance-based methods 
•for each pair of items, get some evolutionary distance (edit distance, 
melting temp for DNA hybridization, strength of antibody cross 
reactions)

•find a tree that "agrees" with the distances either ultametric or additive

•most cases in real life don't match this so you have to find a good 
approx. 


•Maximum-Parsimony methods 
•character-based data only (not necessarily DNA/RNA/Protein data)

• infer sequences at the internal nodes and maximize parsimony 
(minimize the mutations) along branches



How does this relate?

The distance-based methods typically use distances derived from some sort 
of sequence alignment method. 

•This is embedded in the algorithms we will present

• In most cases the choice of such a distance is arbitrary, so it won't be 
specified


What will be presented is an idealized combinatorial optimization solution, 
rather than being realistic and practical, but the ideas are the same with 
some modification. 



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:
•T contains n leaves labeled by a unique row of D.



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:
•T contains n leaves labeled by a unique row of D.
•Each internal node of T is leveled by one entry from D and has at least 2 
children. 



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:
•T contains n leaves labeled by a unique row of D.
•Each internal node of T is leveled by one entry from D and has at least 2 
children. 
•Along any path from the root to a leaf, the numbers labeling the internal 
nodes are strictly decreasing. 



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:
•T contains n leaves labeled by a unique row of D.
•Each internal node of T is leveled by one entry from D and has at least 2 
children. 
•Along any path from the root to a leaf, the numbers labeling the internal 
nodes are strictly decreasing. 
•For any two leaves i,j of T, D(i,j) is the leavel of the least common 
ancestor of i and j in T.



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. An ultrametric tree for D is 
a rooted tree T such that:
•T contains n leaves labeled by a unique row of D.
•Each internal node of T is leveled by one entry from D and has at least 2 
children. 
•Along any path from the root to a leaf, the numbers labeling the internal 
nodes are strictly decreasing. 
•For any two leaves i,j of T, D(i,j) is the leavel of the least common 
ancestor of i and j in T.

Therefore, T (if it exists) is a compact representation of D



Ultrametric Trees
Let D be a symmetric nxn matrix of real numbers. A min-ultrametric tree for 
D is a rooted tree T such that:

•T contains n leaves labeled by a unique row of D.

•Each internal node of T is leveled by one entry from D and has at least 2 
children. 

•Along any path from the root to a leaf, the numbers labeling the internal 
nodes are strictly increasing. 

•For any two leaves i,j of T, D(i,j) is the leavel of the least common 
ancestor of i and j in T. 

Therefore, T (if it exists) is a compact representation of D



Ultrametric Trees
A B C D E

A 0 8 8 5 3

B 8 0 3 8 8

C 8 3 0 8 8

D 5 8 8 0 5

E 3 8 8 5 0 A E
D

B C3
5

8

3
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Ultrametric Trees

Do ultrametric trees exist for all D?
•no, since values need to be shared, there can only be so many of them

Whats an easy test to see if an Ultrametric tree might exits?
•check if the number of distinct values in D is less than n-1 (the maximum 
number of internal nodes)
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•Think about the min-ultrametric tree first, 
then imagine the top to bottom direction 
being time. Each internal node is labeled 
by the absolute time the things diverged. 
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What does it even mean? 
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Ultrametric Trees

What does it even mean? 
•Think about the min-ultrametric tree first, 
then imagine the top to bottom direction 
being time. Each internal node is labeled 
by the absolute time the things diverged. 
•For an ultrametric tree, the time is the 
length of the edges from the node to the 
leaves (in time)
•The difference is that is time since 
divergence or time of divergence
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Ultrametric Trees

Is there a way to easily test if a set of distances is ultrametric? 
•We know from before that for a matrix D to be ultrametric, the number of 
distinct values as to be fewer than n-1.
•Definition A symmetric matrix D defines an (min-)ultametric distance iff 
for every three indices i,j,k, there is a tie for the maximum (minimum) of 
D(i,j), D(j,k) and D(i,k). 
• If a D has an ultra metric tree, it is an ultrametric distance.
•What about the converse? 

v

u
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Ultrametric Trees
Theorem A symmetric matrix D has an 
(min-)ultramtric tree iff D is an (min-)ultrametric 
distance. 

Proof The "only-if" part is observed in the figure on 
the last slide. Prove the "if" by construction:
• let i be an index such that D(i,i) ≠ D(i,j) for all i ≠ j. 
•assume there are d distinct values in row i of D, 
then the path from the root to the leaf labeled by i 
must pass though exactly d nodes, in decreasing 
order.
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Ultrametric Trees

Proof (continued)
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Ultrametric Trees

Proof (continued)
•for each internal node v, let j be a leaf 
contained in the class at that node. 
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Proof (continued)
•for each internal node v, let j be a leaf 
contained in the class at that node. 
•for each other node k there are 3 cases:
• j and k are in the same class, 
•text
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b,d,f,h

ev

j k

Since D is an ultrametric matrix,

and D(i,j)=D(i,k) we know D(j,k) < D(i,j),  
so D(j,k) can be correctly represented 


once we build the subtree 
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Ultrametric Trees

Theorem If D is an ultrametric matrix, then the ultrametric tree for D is 
unique. 

•when constructing the tree, the partition is forced by the labels in D.

•that path from the root to i has to exist in every tree. 

•the positioning of the classes in the tree is also forces. 

•uniqueness is implied by these facts. 


Theorem If D is an ultrametric matrix, then the ultrametric tree can be 
constructed in O(n2)-time. 
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Ultrametric Trees
Data acquisition 
•molecular clock theory -- "accepted" mutations occur in proteins at a constant rate, 
therefore the time of the split (value in D) between proteins is the number of changes over 2. 
Measured physically or chemically. 
•lab-based methods -- example is hybridization experiments. Heat DNA till the double strand 
breaks, put two sets of (now single strand) DNA in the same solution and allow them to 
hybridize and measure at what temperature they separate again. The higher the temperature, 
the stronger the bond and thus smaller the value in D. 
•sequence-based methods -- use the edit distance or some other similarity measure to find 
the values in D.

Most "real" data is not ultrametric, and ultrametric data does not necessarily reflect reality. 
•when it does happen (or close to), its strong evidence that what's being measured is close to 
capturing the true evolutionary history
•related question: what is the smallest amount of perterbation needed to make the data 
ultrametric? 
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Additive-distance trees
Ultrametric is the "holy grail", but when its not able to be obtained, we can use a less 
stringent model. 

Definition 
•Let D be a symmetric n by n matrix where the numbers on the diagonal are all 0, and 
the off-diagonal numbers are all strictly positive.
•Let T be an edge-weighted tree with at least n nodes, where n distinct nodes are 
labeled with rows of D. 
•Tree T is called an additive tree if for every pair of labeled nodes (i, j), the path from 
node i to node j has total weight (or distance) exactly D(i,j). 

Problem
•Given a matrix D with 0s on the diagonals, and positive numbers in all other 
locations, find the additive tree T or determine that one does not exist. 
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Additive-distance trees

The algorithms for solving this problem run in O(n2) and have been described 
in at least a dozen publications. 


The problem can also be reduced to solving the ultrametric tree problem by 
constructing a special D' matrix in O(n2) time. 


Details are in Gusfield Section 17.4.1. 
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Parsimony
Parsimony's main principle: "if there exists more than one possible answer to the 
question, the simpler answer is more likely to be correct" (when you hear hooves think 
horses not zebra). 

In sequence evolution each character in a sequence will be modified at most one time 
(sometimes called the infinite sites model). 

Therefore, we can change the sequence data into a binary labeling

•0 if the character is unchanged in this sequence

•1 if it has already been modified

Definition Let M be an n by m binary (0-1) matrix representing n objects in terms of m 
characters or traits that describe the object. Each character takes one of two possible 
states, 0 or 1, and cell (p,i) of M has the value of 1 iff object p has character i. 



Parsimony

Definition Given an n by m binary character matrix M, a phylogenetic tree 
for M is a rooted tree T with exactly n leaves that obeys the following:

•each of the n objects labels exactly 1 leaf of T 
•each of the m characters labels exactly 1 edge of T 
•for any object p, the characters that label the edges along the unique 
path from the root to the leaf specify all of the characters of p whose 
state is 1. 
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Parsimony

The perfect phylogeny problem

•Given an n by m binary matrix M, determine if a phylogenetic tree exists 
if so, find it. 
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Parsimony
Theorem Matrix M has a phylogenetic tree iff for every pair of columns i, j either:

•the set of rows that contain 1's in i (Oi) are disjoint from those in j (Oj), or 
•one is a subset of the other.

Proof (sketch)
•(Tree→Columns) Assume there is a tree T, for any two columns i and j, and let ei be the edge where i 
changes states (similarly for ej), either:
•ei=ej, in which case Oi=Oj,
•ei is on the path from the root to ej, in which case Oi ⊆ Oj

•ej is on the path from the root to ei, in which case Oj ⊆ Oi

•the paths from the root diverge before either ei or ej, in which case Oi Ⴖ Oj = ∅
•(Columns→Tree)

•using similar arguments above you can construct a tree such that given that a pair of columns is 
disjoint or containing you can place them in the tree either ahead of or on a separate branch from 
the other. 
•this also leads to a method for tree construction. 



Tree Compatibility

Definition A phylogenetic tree T' is a refinement of T if T can be obtained by 
a series of contractions of edges in T'.

•T' contains more information than T, but still agrees with the evolutionary 
history. 


Definition Trees T1 and T2 are compatible if there exists some phylogenetic 
tree T3 refining both.


Tree compatibility problem Given phylogenetic trees T1 and T2 determine if 
the two are compatible. 



Tree Compatibility

Tree compatibility problem Given phylogenetic trees T1 and T2 determine if 
the two are compatible. 


Assuming T1 has n internal nodes and m leafs. Build M1 with m rows and n 
columns, and let let M1(i,j) be 1 if leaf i is in the subtree rooted at node j. 
(similarly for M2 from T2). 

Create matrix M3 as the concatenation of the columns of M1 and M2.


Theorem T1 and T2 are compatible iff there is a phylogenetic tree for M3.



Construction Algorithms
Up to now, what has been examined are idealized models in decreasing 
strictness.


Since the data we get from natural sources (be it biology, chemistry, 
engineering applications, etc.), we need heuristics of some sort. 


Two major classes:

•Neighbor-joining methods

•Maximum parsimony


Both work on the parsimony principles. 



Maximum Parsimony
The Maximum Parsimony Problem 
(sometimes called the Large Parsimony 
Problem) is stated as follows:

•Given a matrix M for a set S of n taxa 

•find the tree T wihch is leaf labeled by 
S and minimizes the edges that are 
labeled by character position changes.


This problem is NP-Hard 
•naïve solution is to enumerate all 
possible trees, but there are (2n-5)!!

• (here p!! = 1*3*5*p)
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Maximum Parsimony

Branch and Bound -- Henry and Penny (1982)

•Starting with a tree of 3 taxa (a star tree) add new taxa at each possible 
location and recurse. 

•Since the number of mutations is monotonically increasing, stop any 
computational branch that cannot be optimal (based on the scores of the 
other computational branches). 

•You can use some fast heuristic to get a starting lower bound. 
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connected graph where nodes are the 
labels S, and edge weights are 
determined by the hamming distance 
between the sequences. 
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connected graph where nodes are the 
labels S, and edge weights are 
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Maximum Parsimony
2-Approximation Algorithm
•From M create an undirected fully 
connected graph where nodes are the 
labels S, and edge weights are 
determined by the hamming distance 
between the sequences. 
•Find the minimum spanning tree of the 
graph.
•Convert into a phylogenetic tree by adding 
extra edges with the taxa at the leaves. 

Running time: 
•O(n2m) time, dominated by the graph 
construction
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Maximum Parsimony
2-Approximation Algorithm

The approximation guarantee is based on an 
Euler cycle of the best tree.
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Neighbor Joining
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Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n)
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)
•for all {i},{j} ∈ Z set D({i},{j})=Mi,j

•while |Z|>1
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

•(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

•form C by creating a new cluster root and connecting it to the two cluster roots 
with edge weights  and  respectively. 1

2 (D(A, B) + (uA − uB)) 1
2 (D(A, B) + (uB − uA))

•Z = Z ∪ {C} - {A,B}
•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )



Neighbor Joining

M 1 2 3 4 5

1 8 8 5 3

2 8 3 8 8

3 8 3 8 8

4 5 8 8 5

5 3 8 8 5

1

2

5

4

3



Neighbor Joining

D {1} {2} {3} {4} {5}

{1} 8 8 5 3

{2} 8 3 8 8

{3} 8 3 8 8

{4} 5 8 8 5

{5} 3 8 8 5

1

2

5

4

3

• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j



Neighbor Joining

D {1} {2} {3} {4} {5}

{1} 8 8 5 3

{2} 8 3 8 8

{3} 8 3 8 8

{4} 5 8 8 5

{5} 3 8 8 5

1

2

5

4

3

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

uA

{1} 8

{2} 9

{3} 9

{4} 8.66

{5} 8
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2

5

4
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•while |Z|>1 

•(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB
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{1} 8

{2} 9

{3} 9

{4} 8.66
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Neighbor Joining

D {1} {2} {3} {4} {5}

{1} 8 8 5 3

{2} 8 3 8 8

{3} 8 3 8 8

{4} 5 8 8 5

{5} 3 8 8 5

2 3

4

•while |Z|>1 
•form C by creating a new cluster root and connecting it to the two cluster roots with 
edge weights  and  respectively. 1

2 (D(A, B) + (uA − uB)) 1
2 (D(A, B) + (uB − uA))

uA

{1} 8

{2} 9

{3} 9

{4} 8.66

{5} 8

1.5 1.5

1
5



Neighbor Joining

D {1} {2,3} {4} {5}

{1} 6.5 5 3

{2,3} 6.5 6.5 8

{4} 5 6.5 5

{5} 3 6.5 5

4

•while |Z|>1 
•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )

2 3

1.5 1.5

1
5



Neighbor Joining

D {1} {2,3} {4} {5}

{1} 6.5 5 3

{2,3} 6.5 6.5 8

{4} 5 6.5 5

{5} 3 6.5 5

1

2

5

4

3

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

uA

{1} 4.833

{2,3} 7

{4} 5.5

{5} 4.833

1.5 1.5
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D {1} {2,3} {4} {5}

{1} 6.5 5 3

{2,3} 6.5 6.5 8

{4} 5 6.5 5

{5} 3 6.5 5

1

2

5

4

3

•while |Z|>1 

•(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

uA

{1} 4.833

{2,3} 7

{4} 5.5

{5} 4.833

1.5 1.5



Neighbor Joining

D {1} {2,3} {4} {5}

{1} 6.5 5 3

{2,3} 6.5 6.5 8

{4} 5 6.5 5

{5} 3 6.5 5

1

2

5

4

3

•while |Z|>1 
•form C by creating a new cluster root and connecting it to the two cluster roots with 
edge weights  and  respectively. 1

2 (D(A, B) + (uA − uB)) 1
2 (D(A, B) + (uB − uA))

uA

{1} 4.833

{2,3} 7

{4} 5.5

{5} 4.833

1.5 1.5

1.5 1.5



Neighbor Joining

D {1,5} {2,3} {4}

{1,5} 5.75 3.5

{2,3} 5.75 6.5

{4} 3.5 6.5

1

2

5

4

3

•while |Z|>1 
•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )

1.5 1.5

1.5 1.5
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{1,5} 5.75 3.5

{2,3} 5.75 6.5

{4} 3.5 6.5

1

2

5

4

3

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z

1.5 1.5

1.5 1.5

u

{1,5} 3.083

{2,3} 4.083

{4} 3.33
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D {1,5} {2,3} {4}

{1,5} 5.75 3.5

{2,3} 5.75 6.5

{4} 3.5 6.5

1

2

5

4

3

•while |Z|>1 

•(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1.5 1.5

1.5 1.5

u

{1,5} 2.833

{2,3} 3.833

{4} 3.33



Neighbor Joining

D {1,5} {2,3} {4}

{1,5} 5.75 3.5

{2,3} 5.75 6.5

{4} 3.5 6.5

1

2

5

4

3

•while |Z|>1 
•form C by creating a new cluster root and connecting it to the two cluster roots with 
edge weights  and  respectively. 1

2 (D(A, B) + (uA − uB)) 1
2 (D(A, B) + (uB − uA))

1.5 1.5

1.5 1.5

u

{1,5} 2.833

{2,3} 3.833

{4} 3.33

1.5 2



Neighbor Joining

D {1,5,4} {2,3}

{1,5,4} 4

{2,3} 4

1

2

5

4

3

•while |Z|>1 
•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )

1.5 1.5

1.5 1.5

1.5 2
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D {1,5,4} {2,3}

{1,5,4} 4

{2,3} 4

1

2

5

4

3

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z 

•(A, B) = arg min
(A,B)∈Z

D(A, B) − uA − uB

1.5 1.5

1.5 1.5

1.5 2

u

{1,5,4} 1.33

{2,3} 1.33



Neighbor Joining

D {1,5,4} {2,3}

{1,5,4} 4

{2,3} 4 1

2

5

4
3

•while |Z|>1 
•form C by creating a new cluster root and connecting it to the two cluster roots with 
edge weights  and  respectively. 1

2 (D(A, B) + (uA − uB)) 1
2 (D(A, B) + (uB − uA))

1.5 1.5

1.5 1.51.5 2u

{1,5,4} 1.33

{2,3} 1.33

2 2



Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n) 
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j 
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•  
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Algorithm Given a distance matrix M with rows labeled (1,2,3....n) 
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j 

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z 

•  

•form C by creating a new cluster root and connecting it to the two cluster roots 
with edge weights  and  respectively. 

•Z = Z ∪ {C} - {A,B}
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Neighbor Joining
Algorithm Given a distance matrix M with rows labeled (1,2,3....n) 
• let Z = {{1},{2},{3},..,{n}} (* the set of initial clusters *)

•for all {i},{j} ∈ Z set D({i},{j})=Mi,j 

•while |Z|>1 
•define uA = 1/(n-2) * ΣF∈Z D(A,F) for all A ∈ Z 

•  

•form C by creating a new cluster root and connecting it to the two cluster roots 
with edge weights  and  respectively. 

•Z = Z ∪ {C} - {A,B}

•define D(F,C) = D(C,F) = 1/2 ( D(A,F) + D(B,F) - D(A,B) )
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1
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O(n3) total time



Unweighted Pair Group Method with Arithmetic 
Mean (UPGMA)

Similar to Neighbor Joining, but does not choose the clusters that are most 
different (i.e. the use of uA values). 


Uses an arithmetic mean to calculate new cluster distances. 


