
RNA-Seq Alignment/Assembly 
using STAR

CS 4390/5390 and TopHat if we have time. 



The Central Dogma

DNA 

RNA 

Proteins

{A,C,T,G}

{A,C,U,G}

{A,C,D,E,F,G,H,I,K,L,M,
N,P,Q,R,S,T,V,W,Y}

Transcription

Translation

RNA 
•pre-mRNA undergo splicing to remove 
the introns and leave only (some) exons 
•some RNA perform functions on their 
own and are not spliced, called ncRNA 
(non-coding RNA)

pre-mRNAintron intron
intron

exon exon exon exon mRNA

exon exon exon exon

exon exon exon mRNAalternate splicing

transcript



Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA



Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA



Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA



Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA



Sequencing Applications
DNA

RNA sequencing
adapted from figure 1.2 in Mäkinen, et al. 2015

pre-mRNA

mRNA



How do you solve this? 



How do you solve this? 

Split the read into chunks, and align those seperately

•can be done at random positions or predicted intron boundaries

•the chunks end up being small



How do you solve this? 

Split the read into chunks, and align those seperately

•can be done at random positions or predicted intron boundaries

•the chunks end up being small

Align to the known transcriptome rather than the genome

•can miss novel transcripts (ones we have not seen before)



How do you solve this? 

Split the read into chunks, and align those seperately

•can be done at random positions or predicted intron boundaries

•the chunks end up being small

Align to the known transcriptome rather than the genome

•can miss novel transcripts (ones we have not seen before)

Design a new aligner that takes these complications into account



How do you solve this? 

Split the read into chunks, and align those seperately

•can be done at random positions or predicted intron boundaries

•the chunks end up being small

Align to the known transcriptome rather than the genome

•can miss novel transcripts (ones we have not seen before)

Design a new aligner that takes these complications into account

Some combination of the above techniques



Spliced Transcripts Alignment to a Reference 
(STAR)

Designed to align non-contiguous sections of a read, directly to the 
reference genome


Consists of two major steps:

•Seed searching

•clustering, stitching, and scoring



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to rhe right



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to rhe right

This is similar to a Maximal Exact Match (MEM) or Maximal Unique Map (MUM), 
the latter requires that only one location in the genome matches that location.  

In both cases, the value if i is not given. 



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

Genome

the "splice junctions" are inferred from the alignment



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

The key is that the re-mapping only 
happens from the end of MMP1 
rather than finding all maximal 

matchings then stitching

Genome

the "splice junctions" are inferred from the alignment



Seed Searching
Maximal Mappable Prefix (MMP) for read R, read start location i, and genome G:

•the longest substring R[i ...  (i + MML - 1)]  
•such that there exists some set J = {j1,j2,...,jn} where for all jk∈J 
                                                                   R[i ... (i+MML-1)] = G[j ... (jk+MML-1)]

•where MML is the Maximal Mapping Length


The basic algorithm is

•map from the start of the read as far as possible

•restart searching from the next position to the right

The search is implemented using an uncompressed suffix array(s)

•one for each chromosome  



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1 MMP2



Seed Search

The search is implemented using an 
uncompressed suffix array(s)

•one for each chromosome  
•MMP mapping comes "free" with 
binary search

Suffix Array

Read
MMP1 MMP2

needs to be performed using both the 
read and it's reverse complement



Seed Search

The method described:



Seed Search

The method described:
•Easily identifies "multi-mapped" reads since they are together in the SA



Seed Search

The method described:
•Easily identifies "multi-mapped" reads since they are together in the SA
•Find mismatches internal to the read



Seed Search

The method described:
•Easily identifies "multi-mapped" reads since they are together in the SA
•Find mismatches internal to the read
•Overcomes issues with poly-A tails, library adaptors, and low quality



Seed Search

The method described:
•Easily identifies "multi-mapped" reads since they are together in the SA
•Find mismatches internal to the read
•Overcomes issues with poly-A tails, library adaptors, and low quality
•Has high speed, but large memory footprint compared to compressed SAs



Clustering, stitching, and scoring

A set of the MMPs are selected as "anchors"
•"In the current implementation, all the alignments that map less than a 
user defined value (typically 20-50) are selected as anchors." 🤷



Clustering, stitching, and scoring

A set of the MMPs are selected as "anchors"
•"In the current implementation, all the alignments that map less than a 
user defined value (typically 20-50) are selected as anchors." 🤷
•Anchors are those that map to less than 50 locations in the genome



Clustering, stitching, and scoring

A set of the MMPs are selected as "anchors"
•"In the current implementation, all the alignments that map less than a 
user defined value (typically 20-50) are selected as anchors." 🤷
•Anchors are those that map to less than 50 locations in the genome

Alignment "windows" are then defined as regions around anchors
•all of the MMPs in those windows will be stitched together linearly
•the size of these windows determines the maximum intron size



Clustering, stitching, and scoring
They stitch two MMPs together allowing

•one gap (of multiple bases) in the genome, and

•minimal mismatches. 


Δ is the difference in the size of the space between 
the MMPs in the genome and the read

•this is how long the gap is going to be


Match counts the number of bases that are better 
aligned before the gap minus the count of those 
that are better placed after

max
r1<rj<r2

(rj−r1)

∑
r′ =1

Match(r, Δ) − Pgap(rj)

Match(r′ , Δ) =:
1 if R(r1 + r′ ) = G(g1 + r′ ) & R(r1 + r′ + Δ) ≠ G(g1 + r′ + Δ)
−1 if R(r1 + r′ ) = G(g1 + r′ ) & R(r1 + r′ + Δ) ≠ G(g1 + r′ + Δ)
0 otherwise

Δ =: (g2 − g1) − (r2 − r1)



Clustering, stitching, and scoring

Mate pairs are initially mapped 
independently as long as they are on the 
same strand


If the whole read is not covered in 1 window

•find two (or more) non-overlapping 
windows that map to the read

•create a chimeric mapping



Clustering, stitching, and scoring

Mate pairs are initially mapped 
independently as long as they are on the 
same strand


If the whole read is not covered in 1 window

•find two (or more) non-overlapping 
windows that map to the read

•create a chimeric mapping

A "chimeric sequence" or "chimera" is a 
sequence made by combining two (or more 

other sequences). For example, this can 
happen with mistakes in crossover. 



Clustering, stitching, and scoring
The score of each mapped read is:

S(𝔸) = mt𝔸 − ms𝔸 − in𝔸 − dl𝔸 − gp𝔸



Clustering, stitching, and scoring
The score of each mapped read is:

S(𝔸) = mt𝔸 − ms𝔸 − in𝔸 − dl𝔸 − gp𝔸

match and mismatch scores 
as we saw before



Clustering, stitching, and scoring
The score of each mapped read is:

S(𝔸) = mt𝔸 − ms𝔸 − in𝔸 − dl𝔸 − gp𝔸

match and mismatch scores 
as we saw before

affine gaps with different 
scores for the read and the 

genome



Clustering, stitching, and scoring
The score of each mapped read is:

S(𝔸) = mt𝔸 − ms𝔸 − in𝔸 − dl𝔸 − gp𝔸

match and mismatch scores 
as we saw before

affine gaps with different 
scores for the read and the 

genome

splice junction score based on the 
sequences at the end of the junctions: 

GT/AG, GC/AG, & AT/AC  
are normal, all others have higher penalties 

(this is the Pgap score from earlier)



Clustering, stitching, and scoring
The score of each mapped read is:

For each read, the mapping with the highest score is retained

S(𝔸) = mt𝔸 − ms𝔸 − in𝔸 − dl𝔸 − gp𝔸

match and mismatch scores 
as we saw before

affine gaps with different 
scores for the read and the 

genome

splice junction score based on the 
sequences at the end of the junctions: 

GT/AG, GC/AG, & AT/AC  
are normal, all others have higher penalties 

(this is the Pgap score from earlier)



Speed vs. Space tradeoff of the SA



Alignment Quality
Better



Take Aways for STAR

Non-contiguous alignment for RNA-Seq is not a totally solved problem


STAR is specifically designed to take introns into account during alignment


Algorithm is extendable to longer read lengths since it can ignore poor 
quality regions and chimeric reads


Large memory consumption, but fast due to the use of uncompressed SAs



TopHat

Creates an alignment in stages:

•find all high quality whole read alignments to the genome

• identifying possible splice locations

•aligning initially unmapped reads to induced sequences



Aligning Reads using Bowtie
Using strict alignment critera, TopHat uses Bowtie to align 
reads to the whole genome

•they include multi-mapped reads


The reads which don't map are called "Initially Unmapped" 
or IUM reads

• likely don't map because they cross introns

•will be used later to confirm splice junctions


"Low complexity" reads are discarded

•these are likely highly repetitive



Construct potential exons
Construct the set of mapped sequences 

•the "islands" of sequence that map to the genome 

•using the assemble functionality of MAQ


In low coverage regions replace any mismatches with the 
original genomic sequence


Append a small amount of the flanking sequence from the 
genome to the end of each cluster

•there may be some parts of the end of an exon that are 
only covered by spliced reads



Create potential splice locations
Splice junctions usually happen with predictable bases

•consider all possible pairs as potential splice locations

•create a set of new sequences

•store the k-mer surrounding such locations as a seed 
for mapping



Create potential splice locations
Creating all possible combinations may be too many

•only find regions that are high coverage or at the 
ends of the potential exons

Dij =
∑j

m=1 dm

j − i
⋅

1
∑n

m=0 dm

probability of including 
potential junction i to j

coverage at location m



Index IUM reads

For each unmapped read

•extract all unique k-mers from the "high quality" region

•here k~10



Align remaining reads
Find all matches between k-mers 

•from the IUM set and 

•the newly created potential junction locations

Extend left and right from the k-mer to find an alignment



Align remaining reads
Find all matches between k-mers 

•from the IUM set and 

•the newly created potential junction locations

Extend left and right from the k-mer to find an alignment

Will miss alignments with mismatches near splice location

Discard junctions that are predicted to be anomalies:

•occurrence rate is lower than some percentage of the 
coverage of the flanking regions



Take Aways from TopHat

Uses existing software to do some of the heavy lifting


Strict parameters on the splice junctions make the algorithm fast


Limited in the splice junction sequence



TopHat2
Aligns reads in stages of increasing time requirements: 

•first to the transctiptome (set of all known transcripts),

•then whole reads to the genome,

•then in chunks



Align to transcriptome

Aligned using Bowtie


The transcriptome is the set of all 
known transcripts

•missing some novel transcripts


This step identifies some of the spliced 
reads before we go into the TopHat(1) 
pipeline



Align unmapped reads to 
genome

Same as the first step of TopHat(1)



Align chunks of 
unmapped reads

Additional step from TopHat(1)


Split read into subsequences

•align these subsequences using 
Bowtie



Identify potential splice 
locations

Use these mapped reads to limit the 
number of potential splice locations

•consider more pairs of ending  
2-mers



Align unaligned chunks

Creating a new index of these 
flanking regions

•align the unaligned chunks of all 
of the reads to find the location 
of the splices



Recreate whole read 
alignments

Using the flanking mapping or the 
original mapping


Stitch together to get the whole read 
mapping



Re-map reads

This step will help align small overlaps 
between the two adjoining exons

•similar to the last step in TopHat(1)



Take Aways for TopHat2

Built on Bowtie(2), so the actual mapping is very accurate


Annotation allows TopHat2 to better align reads in known transcripts


