Introduction to Sequencing CS 4390/5390 Fall 2019

Associated Reading: Mäkinen, et al. Chapter 1 Gibson and Muse, Chapter 2

At the highest level

Organism are made up of one or multiple cells

inside the cell is the nucleus, which contains the DNA

humans are *diploid* meaning we have 2 copies of each chromosome (one from each parent)

DNA

- double stranded
- contains all of the information for "you"
- only about 1.5% of the human genome encodes proteins

DNA

Transcription

- process of uncoiling, seperating, and copying DNA into RNA
- first stage is called "pre-mRNA" in the case of protein coding genes

DNA

RNA

- (non-coding RNA)

RNA

- (non-coding RNA)

RNA

- (non-coding RNA)

Translation

 3-letter groups of RNA characters, codons, are converted to amino acids, the building blocks for proteins

		Second Character								
			А		С		U		G	
		AAC	Ν	ACC		AUC		AGC	S	
First Char.	A	AAU		ACU	т	AUU	I	AGU		
		AAA	К	ACA		AUA		AGA	R	
		AAG		ACG		AUG	M/start	AGG		
	С	CAC	н	CCC	Ρ	CUC		CGC	R	
		CAU		CCU		CUU	L	CGU		
		CAA	Q	CCA		CUA	L .	CGA		
		CAG		CCG		CUG		CGG		
	U	UAC	Y	UCC	S	UUC	F	UGC	С	
		UAU		UCU		UUU	•	UGU		
		UAA	stop	UCA		UUA		UGA	stop	
		UAG		UCG		UUG	-	UGG	W	
	G	GAC	D	GCC	A	GUC		GGC	G	
		GAU		GCU		GUU	v	GGU		
		GAA		GCA		GUA	v	GGA		
		GAG		GCG		GUG		GGG		

С G С G Third .Char С G С U

Proteins

Do stuff in the cell, including help with translation and transcription

When copying a genome "errors" may occur, these changes are what make people different

- •99.99% of our genomes are identical
- Single Nucleotide Polymorphism (SNP) -- a change at a single base
- Structural Variants (SV) -- large scale changes

copying

copying

SVs

SNP

inversion

copying

duplication

translocation

deletion

When copying a genome "errors" may occur, these changes are what make people different

- •99.99% of our genomes are identical
- Single Nucleotide Polymorphism (SNP) -- a change at a single base
- Structural Variants (SV) -- large scale changes

SVs

TACACCGTACGATCG copying **TACACATGCCGATCG** inversion

TACACCGTACGATCG copying TACACCGTACGATCCGTACCG duplication

TACACCGTACGATCG copying **TACAGATCCGTACCG** translocation

TACACCGTACGATCG copying TACAGATCG deletion

- **Deleterious Mutations** -- changes that are harmful (lethal) to a cell
- •Germline Mutations -- changes passed to offspring
- Somatic Mutations -- those not passed down
- •Heterozygous -- different beween copies
- •Homozygous -- same on both copies
- •Allele -- specific position on a chromosome

- **Deleterious Mutations** -- changes that are harmful (lethal) to a cell
- •Germline Mutations -- changes passed to offspring
- Somatic Mutations -- those not passed down
- •Heterozygous -- different beween copies
- •Homozygous -- same on both copies
- •Allele -- specific position on a chromosome

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCG

| primer sequence (matches exactly)

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGA

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGAT

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGATC

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGATCG

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGATCGG

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

ATGTGGCATGCTAGCTAGCCCTACGTATTGCAGGAT

TACACCGTACGATCGATCGG

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

TACACCGTACGATCGATCGG TACACCGTACGATCGATCG TACACCGTACGATCGATC TACACCGTACGATCGAT TACACCGTACGATCGA

• • •

longer sequences move though the gel more slowly

The basis of all modern sequencing.

figure adapted from Gibson and Muse, 3rd Edition (2009)

TACACCGTACGATCGATCGG TACACCGTACGATCGATCG TACACCGTACGATCGATC TACACCGTACGATCGAT TACACCGTACGATCGA

• • •

Second Generation Sequencing

- Also called next generation sequencing
- Based on the same principles, but at a much larger scale
- Improvements were made in the amplification and reading with better microscopes
- With this came shorter sequences
 - Sanger could do >1,000 bases (characters) at once but all done by hand, so 10s of sequences, very accurate
 - Illumina (current standard) ~250 base reads, 1,000,000s of sequences, some errors

Second Generation Sequencing

stack of NY Times, June 27, 2000

Second Generation Sequencing

NextGen sequencing also introduced paired-end reads

- predictable size)
- sequence both ends but keep them together • gives two reads that you know are a certain distance from each other

take a long piece of sequence (much longer than the read size, but

Third Generation Sequencing

Recently Pacific Biosciences and Oxford Nanopore have introduced new technologies that:

- have long reads
- with high(er) error rates

	Sanger	Next-Generation	Third-Generation	
Launched	1977 Basic chemistry 1998 Modern form	2005 with significant improvements since	2010 with significant improvements since	
Estimated Error Rate	0.001% - 1%	0.46% - 2.4%	11% - 14% (but decreasing)	
Cost				
Throughput	A Contraction of the second se	A A A	A A	
Currently Available Platforms	Applied Biosystems*	Illumina Ion Torrent* Qiagen (Europe) Complete Genomics (China)**	Pacific Biosciences Oxford Nanopore	
Clinical Uses	Many (but dwindling)	Many (and growing)	Niche uses (today)	

*Part of Thermo Fisher

whole genome sequencing

Sequencing Applications

bisulphite sequencing

targeted sequencing

RNA sequencing

binding

chromatin immunoprecipitation (ChIP) sequencing adapted from figure 1.2 in Mäkinen, et al. 2015

